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PREFACE

Since my first encounter with computers over five

years ago, when I designed a simple basic compiler for the

TI-59, I have been fascinated with programming languages.

Over the past several years, I have come to believe more

and *n re that programming is more an art form than a

science. This can be seen in the almost unlimited number

of methods that even the simplest of programs can be

impl~emented. With the introduction of ALGCOL and other

imitative block structured languages, programming has

become even more div.ersified. However, I hold to the

belief that there is one most efficient method for each

gi,.cn program application.

I feel it is not necessary to express the frustrations

and anxieties felt when writing a program in a language

that is inadequate to effectively perform a task, when the

results are not as expected and the error messages do not

pinpoint the problems, or when the implementation requires

a complete understanding of how the compiler generates the

object code. I know I am not alone. However, I view these

experiences constructively. It is the inadequacies of the

predecessors, as well as the good features, that should

facilitate the design of new programming languages. The

language designer who does not recognize the faults of

previous languages has not considered the full extent to
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which his language should' apply and is not providing any

benefits to the user over other languages. Language

design, therefore, is a major engineering task, requiring

nct only a familiarity with the object code to be generated

but a deep understanding of all aspects of programming.

The resulting language must efficiently and completely

integrate these two into an effective working system.

Since it is true in some cases that these inadequacies

are relative only to the specific applications of the lang-

uage, they are often not discovered until late in the

design phase or during the implementation phase of the

system. This sometimes requires, as I have discovered, a

complete reevaluation of the language to determine the

affects the changes may have upon the language as a whole.

The majority of the work for this thesis was applied

to the development of the language. The initial request

from the sponsors (AFWAL/ACD) was that the software system

be supported by PLOT-10, the TEKTRONIX graphics software

package. Through the efforts of my thesis advisor, Major

Wirth, DISSPLA was shown to have more flexibility and versa-

tility and provide better support in its device independ-

ence and plot enhancements than PLOT-10. However, it was

not until the end of the third month of research that the

change to DISSPLA was finally approved. Much of the design,

therefore, that had been structured around PLOT-10 support

had to be recomposed to fit that of DISSPLA.
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lan-auae >si ,n :o1tuei t'Juvh t: 'i ' -1tl of this

thesis. This slowed much of the software iysten -Iesign devel-

opmen t.

The syntactic error recovery procedure in this system was

developed independently. Althou-h there were many references to

desi~ning an LR(1) parser skeleton, none of the references iva

any hint as to how error recovery could be implemented.

I would like to thank at this time "Iajor Mfichael C. Wirth

for his efforts and support in this thesis project for without his

help, this document could not have been completed in time. I would

also like to thank Capt. Roie Black and Professor Charles Richards

for their ideas and contributions to this thesis. I would like to

thank Paul Shahady and Tlank Iaas at AFWAL/ACD for their time in

helping me with this project.

Finally, I would like to thank Suzanne 9amel, soon to be

Suzanne Hart, for her devotion and support through the trying tines

of this thesis.
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ABSTRACT

Graphical methods for visual data display and analysis have had a

growing popularity over the past ten years due to their interactive

capabilities and the widespread availability of graphic peripheral

equipment inwhich to display the data. However, these tools are often

inhibited by language complexity and device-dependence considerations

that the user must make. This thesis provides one alternative to these

dilemmas.

An ALGOL-structured Graphics Oriented Language (ASGOL) was designed

to provide a block-structured format to graphics programs, using several

-simple instructions to plot linear, bar, and pie graphs. The system

was developed around the DISSPLA software package, which generates a

device independent file. The DISSPLA post-processing techniques are

then used to produce the graphics output to a number of graphics

peripherals, including TEKTRONIX video screens and CALCOM. plotters.

In addition, the language provides a text processor technique to

draw a variety of character styles and fonts. This text processor can

be used to produce entire reports or to document graphs and charts.



I. INTRODUCTION

In situations where business-oriented data changes on a daily or

weekly basis, it is becoming increasingly important to display

computational analysis of data in various graphical forms that are

easily readable by managers. It is not surprising that graohical

output is preferred over other forms of data representation since it

is an established fact that the human mind can comprehend pictorial

information quickly and easily.

The purpose of this thesis was to design a high-level graphics

oriented language and to implement this language with an interpreter

system. The language was designed to give as much flexibility as

possible to the programmer, yet was constrained to have a general

purpose instruction set for generating graphs as well as text.

The types of graph forms provided include 2-dimensional linear

graph plots (linear-linear, log-linear, linear-log, and log-log axes)

with multiple plotting capabilities, bar and stacked bar graphs, and

pie graphs. Legends and grids for linear and bar graphs are also

aailable. In addition, the language was designed with several text

editor instructions for drawing text anywhere within a page plot.

All DISSPLA fonts and styles are available for string manipulation

through the language, with variable character height. Also, the size

and margins of page plots are adjustable.

The interpreter system was designed to execute on the

Aeronautical Systems Division (ASD) Control Data Corporation (CDC)

computer, using the Display Integrated Software System and Plotting

Language (DISSPLA) package for graphics generation. All plots are
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-,.I in an intermediate device independent file. This file may

th'en be used to display the graphics output through the use of a

post-processor to any of a number of devices, including the TFKTROIIX

4010 and 4014 graphics terminals and the CALCOMP plotters. The post-

processor is also provided by the DISSPLA package.

The development of the formal language was structured according

t the basic application requirements of the system, as set forth by

thesis sponsors (AFWAL/ACD). The Lawrence Livermore Laboratory

(LLL) LR Automatic Parser Generator (ref 7) was used to define the

language. These tables were then used in an existing LR(1) parser

skeleton and combined with the semantics routines of the language and

application modules to generate calls to DISSPLA procedures. The

complete system was written in FORTRAN, a general purpose high-level

language.

ASGOL was designed to provide several advantages over a

comparable FORTRAN program with DISSPLA calls. Each of these will be

discussed throughout the course of this paper. First, the language

is block structured, providing modular program design and syntactic

error checks for instructions available -only within specific block

levels. Second, the instructions were designed to be of a higher

level than the DISSPLA calls, i.e., a single ASGOL instruction may

invoke more than one DISSPLA calls.

However, several disadvantages have been noted as well. First,

since the parsing involves using an LR parser, recovering from a

syntactic error is more difficult than the method already designed

within most FORTRAN compilers. FORTRAN compilers are weak in their

2



err,-, diagnostics, which in most cases in . only an approximate

line number and an error code number.

A second disadvantage is that the ASCOL system does not provide

the efficiency in DISSPLA calls that a rORTRAN program does. Several

of the calls in an ASGOL program may seem repetitive, but are

necessary to contend with the block str .:ture of the language.

Various optimizing schemes could be im>l-ented to improve this

fault.

The system was originally designed to run interactively with the

user. At present this is unfeasible due t the large core memory

requirements not only for the system, but also for the DISSPLA

package. It is hoped that a later version of this system will be

available with interactive capabilities. A set of interactive

commands are already provided in the system for such an extension.

The remainder of this paper describes the efforts of this

thesis. Chapter II defines the application requirements and the

expansions that were applied to the criteria of the system. Chapter

III describes the approach of designing the language, using general

purpose languages as well as graphics oriented languages as

guidelines. In chapter IV, the parts of the system, including how

the interpreter was implemented, are defined. Chapter V describes

how the language may be expanded to include 3-dimensiona and user

defined primitive graphics and how non-i~mediate instructions may be

implemented.

Three appendices have been added for additional information of

3



the system. Appendix A gives the B14F code of the language used to

generate the parser tables. Appendix B describes the system commands

and how the post-processor is used to produce the graphics output.

Finally, appendix C is a programmer's guide to the language.

4



11. REQ'IRRMENTS and EXTENSIONS

At the first of every month, AFWAL/ACD, the thesis sponsors,

produces a commander's report. This report contains graphs and

tables generated from compiled data. Presently, the graphs are drawn

using both DISSPLA and PLOT-10 software packages, while most of the

tables are typed. By designing a graphics oriented language and

developing an interpreter for the language, the majority of the

report could be produced from a single program. The initial design

of the language was structured around four language requirements set

forth by the sponsors. These were that the language should be easily

expandable, that graphics data could be read from data files, that

the complete program or any part of the program could be run, and

that the language have graphics blow-up capabilities.

Expandability can be accomplished by all high-level languages,

but as will be seen in the next chapter on language design, block

structured languages provide the most efficient and simplest method

of implementation.

The data input instructions should be syntactically structured

to allow input from either the terminal (for interactive

commnication) or from an attached data file. Unformatted input and

output instructions provide the simplest syntactic constructs. By

allowing documentation (comments) to be placed in the data files, the

graphics output from an application program can be easily changed by

editing the data file rather than the program. This gives better

flexibility in how the data is to be presented.

The sponsors wanted a system that would not only generate the
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graphs and tables from the complete program, but for sections of the

program as well while the AFWAL report is being reviewed. These

graphs could then be displayed on a large screen. By defining each

of the subtasks of a program (subtasks are defined in appendix C

under the section Beginner's Guide) with a unique identifier, this

could be accomplished. By including the name of a subtask (or of the

program) with the system command PUN (see appendix B), only that

block of the program generates graphs.

An extension to this is the page segment blow-up. Several pages

of the commander's report contain more than one graph. By specifying

the RUN command name as being that of a page segment (where a singe

graph is defined), DISSPLA calls are limited to only that segment,

and the graph is drawn on the complete screen.

Several extensions were made on the initial language design. A

text processor instruction could be used to draw text on a page for

graph documentation, using any of DISSPLA's character fonts and

styles. Several editing instructions could be used to describe the

format of the text.

Although the multiple plot, linear graph is the only charting

style AFWAL presently uses to produce the commander's report, other

basic types should be available in the language, including pie graphs

and bar graphs. The language should implement legends for the graphs

and have a versatile convention for defining axes.
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III. LANGUAGE DESIGN

The approach of graphic languages proposed ovier the past decade

have all been one of three general methods. The most common is

called a subroutine package. This design approach, like that used by

DISSPLA, is a library of external subroutines or procedures that areI

called from a general purpose high-level language program. The

subroutine method suffers in that all routines are syntactically

available anywhere within the program. For this reason, they are not

considered "structured language routines". The packages therefore

have built into them an internal level structuring through package

local variables. These levels insure that all necessary information

is presented in an ordered form. If the programmer calls any of

these routines out of sequence, errors result.

A less common kind of graphics language is known as language

extention. In this approach, new syntactic constructs are added to

an existing "host" language. In most cases, a language extension

requires that modifications be made to the compiler or even that the

compiler be completely rewritten. This presents problems with the

portability of the new language dialect (ref 3). The host language

chosen is usually a block-structured language due to the "nesting" of

blocks in such languages. The most commonly extended language is

ALGOL, since the constructs of this language lend themselves easily

to the description of graphical structures (ref 9).

The least common method chosen is the design of a new graphics

oriented language. A common disadvantage to this approach is that it

seldom attracts prospective programmers away from their current

7



languages. No matter what the deficiencies of the current language,

the programmers learn to get around them and often use these

deficiencies to their advantage. Graphics oriented languages (and

some language extensions) are commonly implemented with an *
interpreter or precompiler. The source program consists ofa

sequence of instructions constrained by the syntax of the graphics4

language. W~hen compiled by the interpreter or precompiler. These

instructions are translated into commands for the host language.

Although the graphics oriented language poses several design

problems, the implementation is basically straight forward. This was

the appzoach taken as the design method for ASGOL.

- In designing a graphics language with the constraints listed in

chapter 11: that of being an LR(1) language and the requirements set

by the thesis sponsors, ten specific parameters were considered

important to the language design phase.

1) To establish and enforce the programming conventions that

will insure absolute cooperation of the parts: This means that the

language should be structured such that the syntax prevents

instructions from being called iii levels that do not support their

implementation. For example, it is impossible to draw a graph until

the format of the screen page and the location of the plotting area

within the page have been previously defined. Also, the language

should assist a programmer in writing large programs when blocks of

the program are developed separately and assembled together at a

later time. This encourages top-down flowchart design in the

development of large or complicated programs.

9



2) Program structure of the language: AIA7OL-like languages

provide a high degree of security through the scope and locality

associated with block structuring. If a constant or variable is

needed for only a particular part of the program, it can be declared

to be local to that subtask thus insuring a close association

between variables and the instructions that use them. Also, a

programmer can be absolutely sure that no other parts of the program

will access these variables.

Furthermore, this type of structuring allows dynamic allocation

of the names, the types, and the values of variables and constants

stored in the symbol tables of the interpreter system. Since the

blocks of an ALGOL-like language are always completed in reverse

order in which they are entered, the storage area of variables in the

symbol tables can be reallocated as soon as they are no longer

required.

3) There were two functional requirements of the language that

were met in addition to the requirements set by the thesis sponsors:

the use of arithmetic operations and string manipulation. In most

business situations, the input data used to draw graphs and charts is

in the form of raw data requiring comnputational analysis before they

can be graphically presented. In addition, the analysis may

represent not only past and present trends, but future trends as

weil. These trends are often based upon physical mathematical

models. By designing arithmetic as well as conditional expressions

into the language and applying the standard format for algebraic

precedence, the programmer can not only evaluate the input data, but

also determine during execution how the data is to be presented.

9



Since DISSPLA's most significant contribution to graphics

display is the string manipulation of character fonts it would have

been a mistake not to include several instructions to implement

these fonts without inhibiting the versatility of the DISSPLA

instructions.

4) DISSPLA Interface Requirements: As stated above, DISSPLA is a

subroutine package that implements its own internal level structure.

There are four levels in DISSPLA as shown in table 1. With each

legal call instruction to the DISSPLA package, a check is made to

determine whether the requirements for raising the level of the

package have been met. There are additional instructions that must

'be included to lower the level as well.

The format and structure was carried through to ASGOL for

compatibility with DISSPLA. The basic physical structure of DISSPLA

is the page which represents a single "image" of one or more objects.

Each image is required to have a defined page number, page border,

subplot area, physical origin, and an axis system, litigated by the

levels shown in table 1.

TAILE 1

DISSPLA Levels

0 1 before initialization
1 after initialized page
2 after page border,physical origin,

and subplot area defined
3 axis system defined

10



5) Instruction Control Level: It was inevitable that the

hierarchical structure of this language over the host language

(OISSPLA) would produce a semantic gap between the two; however, by

designing the language with this in mind, the problem was somewhnat

lessened. The conflict was the inverse relationship between

versatility and simplicity. By making the language versatile, the

number of instructions in the language become too large for any

practical use and therefore require a deep understanding of the

constructs, and the language defeats its own purpose. In an

opposite light, over-simplification increases the semantic gap and

if any type of versatility is available, the instructions become too

-complex.

6) Error recovery: Many language designers fail to recognize the

importance of designing a language with error detection and recovery

within the syntax of the language. Instead, it is left to the

interpreter or compiler to detect almost all possible programming

errors and issue a message for each. This means that the system

becomes more complex. Subtle errors may be easily overlooked and the

system cannot provide complete error detection. By developing much

of the error detection into the syntax of the language, the system is

relieved of much of this task, and actually provides better

reliability and security against errors.

Since program debugging is often an exaustive and time consuming

part of software development, it is also important that when

syntactic (as well as semantic) errors are detected, the system

provide a detailed description of the error as well as pinpointing



its location. A difficult task in any system is syntactic error

recovery, especially for LR parsers. However, it is important that

the system recover sufficiently to continue parsing and check as much

of a program for further errors as is possible. Error recovery is

discussed further in chapter IV.

7) Readability: When the objective of readability by a human

being is replaced with readability by the host language, the

programmer is forced to uvrite an excessive amount of cornments to

document a program. When the language is designed to produce good

self-documenting code, the user does not have to contend with this

difficulty. Reserved words in the language were chosen, therefore,

-to best describe linguistically what the instructions do.

Also, readability is often sacrificed for writability by

providing an unlimited number of default conventions and implicit

assumptions in the language, as well as abbreviations of reserved

words. These conventions were avoided.

8) Input and output interface: Since the data used to generate

graphs and text often come from attached local files, the language

was designed with several simple instructions to read data from a

numbei of sequencial files. In addition, an output instruction was

included to write data to the output file, to the terminal, or to a

specified output tape. This provides better debugging capabilities

for programs and, more importantly, allows data obtained from

computations to be stored for later use.

9) Iterative and conditional instructions: A language whose only

primitive structure is sequencial execution provides a very limited

12



implementation format. Almost all languages therefore contain some

forms of looping or decision constructs to provide better

flexibility.

ASGOL was designed with all four of the primitive structures set

forth by Bohm and Jacopini (ref 2). These are the composition, the

selection (IF structure), and two iteratives (WHILE and REPEAT

structures). In addition, the selection was extended to include the

CASE structure and the FOR structure. Since all programs can be

written using these primitive structures (ref 2), the GO TO

instruction was avoided.

10) Previous experience and familiarity with other languages:

4uch of the language design was drawn from various existing language

structures. The reasons were two-fold. First, an ALGOL-like

structure was chosen not only for its nesting level constructs (and

ease of expansion), but also for its familiarity to many programmers;

and second, much of the language was syntactically structured with

existing constructs already widely used.

In partieular, five points were considered in the syntax of this

language: modularity, open-end parameter formats, column dependency,

instruction delimiters, and types of comments.

Modularity is the capability of designing a program in capsules.

Each capsule of the program is independent of all others except for

the affect it may have upon global -variables. Although modularity

can be accomplished with almost any high-level language, ALC4L-like

languages provide a much more efficient, readable, and most of all

expandable method of modularity through their block structure. ASGOL

13
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extends this ability further. By allowing any of the blocks to

actually have no instructions at all, it is possible to define blocks

early in the program design and add them in later. This also

encourages top-down flowchart design, which is an important aspect of

any software development.

Open-end parameter formats unfortunately have been used in some

graphics languages (ref 11). An open-end parameter format means that

not all of the parameters of the instruction have to be specified.

When the instruction is interpreted, the parameters not specified at

the end of the parameter list are initialized to a predefined default

value (by the system or the user).

At first glance, this type of structure seems advantageous,

allowing the programmer to define only those parameters that are

actually needed. However, problems often surface when debugging a

program.

One problem occurs when, for example, a programmer wishes to

change only the parameters at the end of the instruction yet does not

know what the default values of the parameters are. Most of the

languages that use the open-end format allow parameters to be

defaulted by a list of parameter delimiters (commonly the comma). If

however the programmer does not insert the correct number of

delimiters, the system will interpret the declared parameters in the

wrong positions (assuming the parameters are of the same type).

Naturally, the results will be wrong and the reason for the errors

may be hard to determine. Similar situations arise when extra

parameter values are inserted or left out mistakenly.

14



All of these problems describe a specif-ic deficiency of this

format: the system cannot compare the number of parameters read to

the maximal nuimber of parameters that the instruction allows.

Column dependency: Column dependence occurs when particular

columns of each input line (sometimes called a card) are used for a

specific purpose. In FORTRAN for example, the first five columns are

used as labels, column six is a flag that defines the present line to

be a continuation of the previous line, columns seven through 72 are

used for instructions, and 73 through 80 (assuming an 80 column

format) are not read by the compiler. If a programmer oversteps

these boundaries, errors are certain to occur.

Unformatted column structures on the other hand allows better

utilization of storage space and provides more flexible indentation

for program readability. In addition, blank lines may be inserted to

separate sections of the program and a single instruction may occur

over any number of lines without setting a flag. (Most FORTRAN

compilers allow only 19 continuations for a single instruction.)

Furthermore, more than one instruction may be packed on a single

line.

When a language such as ALGOL is designed with unformatted

column structures, symbols are often used (commonly the semicolon) to

establish the end of each instruction. There are good reasons for

using instruction delimiters. Delimiters provide better readability,

especially when several instructions occur on the same line.

Howevier, when delimiters are mandatory, the rules for using them are

often confusing. For example, in PASCAL, all instructions within a
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block must be followed by a semicolon, except for the last

instruction. When blocks are nested, it becomes even more difficult

to remember where the delimiters are placed. It was for this reason

that an instruction delimiter was avoided in ASGOL. Since all

instructions were based upon a common construct of the form:

instruction name ( parameter list

where the instruction name is a single reserved word, it was felt

that readability was not impaired.

If the purpose of a programming language is to help a programmer

in documentation, the design of a good comment convention must be an

important concern (ref 8). There are several designs that have shown

to provide little support for documentation. Both comment methods

used by ALGOL-60 were eliminated. The first method allows placing

comments between an END and the next semicolon, END, or ELSE found on

the input string. This convention can prove disasterous if the end

of the comment delimiter is omitted. The second ALGOL-60 method

allows placing comments between the word C3MM!ENT and a semicolon.

The word COMMENT unfortunately occupies space that could be better

utilized (ref 8).

Another method eliminated due to its column dependence, was one

in which a delimiter is placed in a specific column to define an

end-of-line. Characters after the delimiter are not scanned as text.

This is the method used by some assembly languages and by FORTRAN.

Two methods remained in consideration. The first is similar to
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the prevrious case except that there is no column dependence upon the

delimiter. The second convention is the use of special brackets to

enclose comments. Both of these conventions were implemented by

ASGOL. The delimiter in the first case was chosen to be a double

character set (--), since this reduces the chances of a mispunch over

a single character delimiter. The special bracket convention was

taken from PASCAL: the bracket head /* and tail */.

17



IV SYSTEM DESIGN

Once the initial design phase of the language (the first of

five) was completed and the language was written in LR(1) BNF code,

the parsing tables were generated by the LR(1) language analyzer. A

description of these tables is given along with the BNF code used to

generate the LR tables in appendix A. It is not necessary to

understand how the parsing procedure works unless the language is

expanded to include other constructs. Semantic changes to the

language can be made directly in the system's semantic routines.

System expansion is di3cussed in chapter V.

The parsing tables are used by the system through the common

block called TABCOM. This common block is only available to those

routines that require them.

The system's subroutines are combined into five separate groups:

the main system, the scanner routines, the parser routines, the

semantic routines and application modules, and the error routines.

The interrelationship of these groups are shown in figure 1.
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MAIN 10 PARSER D. SF MANTIC

SCANNE:R;"

ERROR

FIGURE I System Interrelationships

The last section discusses the implementation of the symbol

tables and the common blocks associated with the storage of symbol

information for the entries.

Main System:

Whep the system begins execution, it sends a welcome message to

the terminal and issues a ready prompt "COMMND-". (The system was

designed with the intention that later versions of the system would

run interactively with the user.) A ready prompt is issued every

time the system is ready to accept another command from the terminal.

The system commands are entered from the input file (or the

terminal) and the system retrieves the tokens of each command
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individually by callinq the scanner routines, which return the entry

number of the command token in the vocabulary. A complete

description of the system commands is listed in appendix B. Commas

are used between each token to flag the program that additional

tokens remain on the input line. If the user does not supply the

system with all neede' information required to perform the command,

the system will pro-mp the user for the information needed. Since

the system at present lies not run interactively, it is recommended

that all information be supplied on each input line. Figure 2 shows

the routines associated with the main system.

GRAFPAK -- INITTOK IFNDTK
HELPSUB
INITIAL CLRAXIS

SCLRSTK
-- CLRVART

CLRLEX

FIGURE 2 Main System Subroutines

When the RUN command is detected, the main system calls the

initializing routines which set all common block variables needed for

the grammar parse to initial values. The subtask name specified in

the RUN command is entered into the symbol tables for reference by

the semantics routines and a call is made to DISSPLA to create an

intermediate plot file called PLFILE. The parser routines are then

called to begin the parsing procedure.

Scanner Routines:

The scanner routines (also called the lexical analyzer) are

called to retrieve tokens from three locations: command tokens from

20



tape 5 when called by the main system; language tokens from the

program input file (tape 7) when called by the parsing routines; and

data tokens from one of the data input files when called by the

semantic routines. All data used by the system are read through the

scanner routines.

After each line of the input has been scanned, GETLIN is called.

This subroutine reads the next input line from one of the input files

and stores these characters in a line buffer. Two pointers are used

with the line buffer: one to point to the next unused character in

the line buffer; the other to point to the last character in -he line

buffer. W.hen GETLIN is called to read a new text line from the

program input file, a check is made to determine if an error had been

detected on the previous line. If so, a point "-" is written to the

program output file (tape 10) in the appropriate columns where each

error ocurred. The line read is then written to the program output

file. Figure 3 shows the subroutines associated with the scanner

routines.

SCANNER- DIGIT
GETLIN
SIFNDTK
LETTER

L NUMBER

FIGURE 3 Scanner Subroutines

When the scanner routines are called, the next token is

determined by the following steps:

1) remove blanks and comments from the text;
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2) detect for multicharacter tokens, i.e., reseried words and

identifiers

3) detect for special symbols, e.g., "-" and "-";

4) detect for numbers, i.e., integers and reals;

5) detect for character strings; and

6) issue an error message that the token read is an illegal

token, then scan for another token. When the token being scanned has

been identified, it is returned through SCANNER's single parameter.

For reserved words and special symbols, the parameter contains

the pointer into the vocabulary of the token read. For an

identifier, the name is placed in a symbol string (SYMSTR). For

-numbers, the digits are read sequencially and translated into che

internal machine representation, and the values are passed back

through either of two lexical common variables IVAL or RVAL.

Since the system was written in FORTRAN which requires that

memory be declared statically, several methods were designed to

provide better efficiency of storage space. The manipulation of

character strings was one such case. A string stack was designed to

store character strings in a dynamic fashion. Character strings are

read into the stack starting at the stack top by "pushing" each

character as it is read. After the complete character string has

been pushed, SSTART returns the pointer to the top of the stack prior

to inserting the character string, and SLNGTH returns the number of

characters pushed onto the stack (the number of cells allocated to

the string.)

STRLEV is a single-dimensional array that contains the pointers
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to the stack top for each lexical level the system is in. Each time

a new level is entered, LEXICAL is incremented and the pointer to the

stack top is pushed onto STRLEV. This simulates dynamic allocation

for each lexical level. As characters are read, they are pushed onto

the stack and the stack pointer is changed to point at the top of the

stack. However, since the stack pointer of the previous level has

been saved, at the end of a block, LEXICAL is decremented and the

stack pointer is "popped" from the STRLEV stack. (There are no

instructions in the stack pop; it is performed implicitly when

LEXICAL is decremented.) All of the characters pushed onto the stack

in the level completed are no longer accessible. This simulates a

deallocation of the STRING array. Figure 4 illustrates allocation

and deallocation of character strings.
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In figure 4(a), the system parser enters the fourth level after

which a block of characters were pushed. In figure 4(b) another

level has been entered and a block of characters were pushed onto thE

stack within this level. When level five completes, the string stack

returns to the state in figure 4(a).

Parser Routines:

The parser routines, combined with the LR(fl tables generated

f;om the BNF language description, form the LR(1) parser package.

The parser skeleton ( the LR(1) parser and the scanner routines) of

the system was provided by a previous graduate student at AFIT (ref

10) who obtained them from the Lawrence Livermore Laboratory (ref 7).

The skeleton was modified to fit the specific applications of the

ASGOL system.

The LR(l) parser works as a push-down deterministic finite

automatum. Four of the five properties of the 5-tuple are provided

by the tables in the TABCOM common block:

1) a token vocabulary,

2) a finite alphabet of elements called states,

3) an initial state, and

4) a final state.

The fifth is a set of functions that determine the next

c -ifiguration state of the parser given the current state and a
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single look-ahead token (combined to be called a handle). L(1)

means that only one look-ahead token is required to uniquely

determine the next state. The push-down was implemented with a

parser stack and developed so that each stack location would contain

all information needed for each configuration state.

The LR(1) parser generates a left-right bottom-up parsing

procedure of the input program (called a grammer). The bottom-up

technique is to start with the input tokens (passed by the scanner)

and try to reduce them into non-terminal symbols. Figure 5 shows the

subroutines associated with the parser routines.

1NTPPRT DORD
-- DO TRAIN

-- IFINDR

FIGURE 5 Parser Subroutines

The LR(l) parser procedure is implemented through a FORTRAN

constructed compilation DO loop. Each loop corresponds to a single

canonical parse step. An exit is made from the loop on one of two

conditions: when the current state of the parser is the final state

or when a system or syntactic error is detected and recovery cannot

be made. (Error recovery is discussed later.)

Within the compilation loop, one of three sequencial actions are

performed for each iteration. The first action is a reduction

attempt given the handles and the current look-ahead symbol. A

reduction is performed by popping from the parser stack a specified

number of stack locations. The actual number corresponds with the
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length of the syntax sentence being rediuced. The semantic routines

are called and the production number is passed as the parameter.

Upon return, the new configuration state is found and the state, the

look-ahead token, and the information from the semantic routines are

stored into the semantic stack top location.

The second action is a transition attempt. A transition is

accomplished by pushing the new state (determined by the handles and

current look-ahead token) along with the look-ahead token, on to the

top of the semantic stack.

If both the reduction and transition attempts fail, a syntactic

error has occurred and the error routines are called. A syntactic

-error occurs when an illegal look-ahead token has been scanned. A

token is illegal when it is not one of the tokens acceptable to

perform a reduction or transition. If the error routines recover,

the parsing continues; otherwise, system control returns to the main

system.

Semantic Routines:

The semantic routines, along with the application modules, are

used to generate the host language (DISSPLA) calls. These routines

also describe the semantics of the language. A semantic routine

contains the set of instructions necessary to perform the semantics

of one language syntax sentence. All of these routines have been

written into a single FORTRAN subroutine called SM ANT K A set of

GOTO s at the head of the subroutine specify which routine is to be

implemented with each S{AN&'TK call.
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Once a program has been parsed enough to draw a graph or text,

the semantic routines call the application modules that perform the

DISSPLA calls. The application modules have not at this time been

fully developed. Figure 6 shows the subroutines associated with the

semantic routines.

SMANTK CHARSET

ENTRVAR
ERROR

-- LOOKUP

PAGEPOS

FIGURE 6 Semantic Subroutines

Most of the routines describe the semantics of the language by

performing computations or changing and manipulating data stored in

the semantic stack and symbol table common blocks. (Several of the

routines contain no instructions at all.) The information needed for

each routine can be obtained from the parser stack above the stack

top. This information is then reduced and stored into the location

at the semantic stack top.

Several of the parser routines have not been implemented. Most

of these deal with the iterative and conditional constructs of the

language. These constructs involie non-immeliate executable

instructions. For example, consider a simplification of the language

WHILE construct:

WHILE <expression> DO <block list> END WHILE

28



Since this construct may involve a con-itional loop of -nore than

one instruction (or even subtasks), the instructions must be

retained in their original form before they are reduced to <block

list> and the while expression can be evaluated. The information

needed for the complete <block list> must be stored in a single

semantic stack entry. One method for accomplishing this is described

in the ne,.: chapter.

Error Routines:

During thie interpretation of a program, four types of errors may

occur: system errors, syntactic errors, semantic errors, and

warnings. Each of these affect the system in different ways and are

handled differently.

System errors occur when the program exceeds the dynamic

allocation limits of the system stacks. These errors include a

parser stack overflow, a STRING stack overflow, a variable table

overflow, and an axis table overflow. Since the parser or the

semantic routines can no longer effectively interpret the program,

the parser writes the error diagnostics to the output file and

returns to the main system.

Syntactic errors occur when an illegal token has been scanned.

Syntactic error recover is discussed later.

Semantic errors and warnings occur in the execution of the

semantic routines. Although both of these do not affect the parsing

procedure, when a semantic error is detected, the DISSPLA package
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calls are discontinued. Warnings recover sufficiently enough to

continue without affecting the DISSPLA calls.

After the program has been parsed, error diagnostics are written

to the output file giving the location (line number and column) and a

short description of every error detected. Presently, the system

supports over 100 semantic error and 68 warning checks in the

semantic routines as well as all system and syntactic errors.

Syntactic Error Recovery:

The LR(1) grammar parser generates a syntactic error whenever

the current look-ahead token is neither a legal token for a rediction

nor for a transition. To determine which of the two can be performed

at the current configuration state (NOWSTA) where the error occurred,

a check can be made with the one-dimensional arrays FRED and FTRN

generated by the language analyzer. A reduction is possible if

FRED(NOWSTA) is less than FRED(NOWSTA+I); a transition is possible

if FTRN(NOWSTA) is less than FTRN(NOWSTA+I). One of these checks will

always be true for each state in an LR(1) language (except for the

final state) since each state must provide a path to another.

Furthermore, it can be assumed that the cause of the error is either:

I) a sequence of one or more illegal tokens have been added to

the program,

2) the present illegal token scanned has replaced a legil token,

or

J) a sequence of one or more legal tokens have been omitted from

the program.
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Syntactic error recovery occurs in two steps. First, if a

reduction is possible at NOWSTA, a reduction error recovery attempt

is made. If a reduction is not possible or if the reduction attempt

fails (several situations arise where both reductions and transitions

are possible), a transition error recovery attempt is made. If both

attempts fail, the system is unable to recover from the error.

The implementation approach for both the reduction and

transition attempts are very similar. They differ only in

determining all of the possible states that may occur after NOWSTA,

the configuration state when the syntactic error was detected. Given

NOWSTA, it is possible to determine all of the next legal tokens that

-are acceptable in the input string. These tokens can then be

compared with a set of look-ahead tokens scanned froTi the input.

Rowever, as can be seen in figure 7 for N legal look-ahead tokens,

the number of searches increase exponentially as the level N

increases linearly. The circles represent the configuration states

that occur given the state at the previous level and a legal token.
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FIGURE 7 Possible Look-ahead States

Since the complexity of the implementation also increases with

the number of searches required for N levels (i.e., at each new 3tate

level, all reduction and transition checks must be made), the

reduction and transition attempts were limited to three look-ahead

tokens (the illegal token and the next two tokens on the input

string). This was chosen as a compromise between recovery reliability
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and the amount of computer time and memory necessary for all

searches.

Symbol Tables:

Checking the correctness of a program's semantics and performing

the semantic actions requires knowledge of all identifier attributes.

These identifiers are the constants, variables, and subtask names

used in the source program. The attributes of constants and

variables include the name, the basic type, the array dimensions, the

lexical level, and the value(s) of each identifier. For su'task

-names, the attributes include the name and the subtask type (PROGRAM,

SECTION, PAGE, SEGMENT, or RUN identifier).

A record to contain the attributes of an identifier is allocated

within the semantic routines when the identifier is declared. A

hashing function applied to the identifier name returns a hash

address (between 1 and 50) and ENTRYPT(address) becomes the pointer

into the new record. The size of the bucket, ENTRYPT, was chosen for

conservation of memory with a minimum number of name collisions.

Collisions are discussed below. Figure 8 illustrates how two

identifiers AAA and BBB are entered into the table. The hashing

method provides an efficient method of searching for identifiers.

If, for example, a search was to be made for AAA, the hashing

function will always return the same address.
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!1

ENTRYPT

I * AAA

2 ATTRIB

3 '

4

!

48 BBB

49 . ATTRIB

50 • I

FIGURE 8 Example Symbol Table Structure

A special case occurs when two identifiers hash to the same

address (called a collision). This will always be the case for

identifiers with the same name but declared in two different levels.

Therefore, a chaining method was implemented. Each table record has

a pointer attribute that points to the next identifier at the same

hashing address.

When a collision occurs, the new record is inserted at the head

of the chain. There are two reasons for this. First, when the table

is searched for a specific entry, the :-shing !unction returns the
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address of the head of the cbain. Each entry ni I.-ng the chain is

compared with the entry name being searched f r. The rule for

finding the correct declaration of an identifier is to look in the

current lexical level or block of the program and proceed outward

until it is found. Although two identifiers with the sane name hash

to the same address, the search ends when th- f'rst identifier is

encountered, which is always the one in the 71osest surrounding

block. Any other identifiers with the sa 'i-e therefore are

inaccessible to the system.

The second reason for inserting records at the head of the chain

involves the deallocation of records each time a block is exited.

-Since blocks are exited in reverse order in which they are entered,

all identifiers declared within the block are at the head of the

chains. By searching down the bucket, a check can be made into the

head of each chain. If the lexical level attribute of the first

record of the chains corresponds to the block level being exited, the

record is removed and the next entry of the chain is placed at the

head. The record is deallocated and the comparison is repeated until

all identifiers declared within the block have been remo-:ed.

Consider, for example, an identifier CCC declared within a block

local to the block AAA and BBB were declared in, as in figure 8. If

the hashing function "maps" the name CCC into the same address as

BBB, the results are as shown in figure 9. When the block that CCC

was declared within is completed, the name is removed and the

structure returns to that shown in figure 8.
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ENTRYPT

1 ; AAA

2 --- - ATTRIB

3 0

4
S

48 - CCC BBB

49 0 ATTRIB ATTRIB

50) 6 -

FIGTR' 9 Example Symbol Table Structure

W4hen an identifier is declared to be one of the basic types

integer, real, boolean, or character, or a unit variable, it is

allocated memory within the value stack (VALSTK) (one location for

simple constants and variables and N locations for array variables,

where N equals the product of the declared dimensions). A pointer

into the first location of the value stack allocated is stored in

VALPTR, one of the attributes for all constants and variables. The

value stack comprises two single-dimensional arrays: the first for

storing the values of the constants and variables, and the second for
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determining whether tfhe variables are defined or not. When a block

i.s completed, memory is deallocated from the value stack and the

second array is reset to undefined on the deallocated locations.

For constants and variables declared to be of type string (of

defined length), memory is allocated in the STRING stack. Each

string identifier's attribute STRSTRT contains a pointer to the top

of the stack before the allocation occurred and STRLNG contains the

length of the string identifier. The STRLEV bucket is updated at

each allocation in the same manner as that used to allocate storage

for character strings read in the scanner routines. The record

attribute NEXTCH serves two purposes. First, it always points to the

-next character to be printed to the screen. (see the use of the

function POINTER described in appendix C under expressions.) Second,

when a record is allocated for an identifier, NEXTCH is set to 0.

This value is set to 1 only after the string identifier is defined.

For string constants, this will always occur within the declaration.

For axis variables, two records are allocated. The first is the

type already described: the variable record. The second is an axis

record which contains all six of the attributes needed to define an

axis: the title, the axis type, the min and max points, delta, and

ticks. The variable record is inserted at the head of the chain and

its attribute AXISPTR contains the pointer into the axis record, as

shown in figure 10.
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ATTRIB

ATTRIB

FIGURE 10 Axis Variable Record Structure
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CHAPTER V

This chapter is divided into two basic sections. The first

describes a method of executing the iterative and conditional

instructions of the language and how this method may be applied to

interactive capabilities. The second section explains so-ne ideas on

extending the language to include other constructs.

As stated in the previous chapter, for the iterative and

conditional instrictions to be executed, the instructions fas well as

declarations for conditionals) within the instruction block must be

saved in their original unexecuted form until the iterative or

conditional instruction has been completely reduced. For example,

consider an IF <true branch> containing the declaration and use of a

variable. The instruction within the instruction block cannot

evaluate the variable when it is encountered since it has not been

entered into the symbol table, i.e., the declaration has not been

executed. Instead, the variable name must be retained for later

evaluation. The described method below should be considered only as

one possible method. The description of the records used for this

method are not guaranteed to be completely correct. %ome

modifications to this design may be necessary.

The design approach involves two steps. "he first is the design

of an intermediate tree structured language. The second sten is

replacing the semantic routines of the present system with a routine

that builds a tree from the input text until a point is reached where

the instructions can be interpreted.

A tree structured language was chosen because this approach
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provides a way of not only retaining the order of instructions but

retaining the block structure of the language as well. In addition,

the LR parsing and the basic nesting constructs of the language

simplify building the tree.

There were two record types designed to implement the tree

structure: the instruction record and the node record. Two record

types were chosen due to the common grouping of the language syntax.

The number of record components for each type provides efficient

storage utilization. Furthermore, each record component was designed

with as much commonality as possible to reduce ambiguity. The first

component of the record types was chosen to contain an integer

mneumonic to specify the constructs of the record.

In addition to these records, two array stacks are implemented

with the tree structure. One stack, noted in this chapter as CSTR is

used to store all character strings read from the program text. This

stack is different from the lexical stack STRING. Where CSTR stores

all strings read while parsine, not immediately executable

instructions, STRING stores only the characters within the lexical

blocks being executed.

Figure 11 through 14 show the structure of each mneimonic type

in the instruction record. All component names beginning with the

pointer symbol (0) represent pointers into the record name;

specified. All other names are interpreted as actual .,alues. Shaded

record components represent those not recognized by the construct.

The tables following the record figures describe one method of

interpreting these values.
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The last co'ponent of most instruction records are pointers to

the next instruction record (IR) of the sequence of instructions.

The SECTION, PAGE, and SEGMENT record constructs were designed to

retain the block structure of the language. The PROGRAM construct

will be explained later.

The node records are used to construct all expressions, specify

titles, and store data constints read from the input text file. All

expressions are defined with the EXPRESSION node record at the tree

root. The VARIABLE and FUNCTION node records are the end--,ertices of

the expression trees. All other expression nodes are defined with

the OPERATION node record. The mneumonics of the node records are

shown in figure 15 and 16.

The CSTR stack is a one-dimensional array. The stack is

implemented completely with the CS node record. Each time a new

string has been pushed onto CSTR, a new CS record is allocated, and

the pointer to the first character in the string and the string

length are stored. CSTRSP is the pointer to the top of the CSTR

stack.

Like the CSTR stack, the Identifier Stack Entries (IqE) stack iq

implemente.!d only while parsing not immediately executable

instructions. The ISE stack contains all identifiers encounterel:

within the declaration blocks of the input text. Each stack entry

holds the complete name's character string and a pointer to the

Pre'vious stack entry for the current lexical level. Por the first

identifier of a subtask (or block), the pointer links the current

block entries to the last entry of the immediate outer contour. Each
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time the identifier is used within the bKock, the stack is searched

and the entry pointer (#kISE) is returned. It is possible to allocate

an entry each time an identifier is encountered; however, this does

not provide an efficient use of storage space. If an identifier is

not found within the ISE stack, the symbol table is searched.

In implementing an intermediate tree language, each semantic

routine must be replaced with a procedure that allocates memory in

both record types and both stacks while parsing the input text; then,

after storing the information within the records and stacks, links

the records into a tree structure. Once the parsing has reached a

point where the tree can be interpreted, the tree language

interpreter (TLI) is called, and a pointer into the tree root is

passed.

One of the major disadvantages of the present system is that it

is too large for any practical interactive capabilities. T4ithi the

PROGRAM instruction record, it is possible to separate the system

into two parts; the first part being a "compiler" that using the

LRMl parsing procedures, generates a tree from the complete program

text (source code), the second part being the tree language

interpreter. After the parsing is completed, the compiled tree

language (including the two stacks and both record types) can be

written to a tape, to be later read by the tree language interpreter.

The "compiler" portion of the system would include the parsing

routines (with the tables generated by the LR(1 language analyzer),

the scanner routines, the semantic routines that generate the tree,

and a portion of the error routines. The types of errors that the
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compiler should detect are system stack overflows, syntactic errors,

and all compilation semantic errors and warnings. This relieves much

of the run-time error detection necessary during interpretation of

the tree language.

The "interpreter" portion of the system would include the main

system (which accepts all system commands), the scanner routines, the

MI routines, and the application modules. The scanner routines are

necessary for the unformatted input and output instructions of the

language.
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PROGRAM 1 .1SE ilIR

SECTION #' #ISE /kIR --- NEXT SECTION

PAGE 3i # SE: #IR .- NEXT PAGE

4 DIR MAkR f." EXP LOC

SEGMENT 5! #ISE' #IR #UVL -- NEXT SEGMENT

CONST#DECL. 6 AISEL #EF ,0 #IR

VAR#DECL. 74#ISEL TYP #EXPL AIR

BINDING 8 1 iUV /IR

GRACE 9! ' /itv #IR

BORDER OV #U #V AIR

MARGIN 11I #UV #UV

FRAME 12. 1 #EXP i IR

FIGURE 11 Instruction Records
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SET (BASIC) 13 IfVAR TYPE 6EXP #IR

SET (AXIS) 13 #VAR 5 #-kXS $1IR

SET (UNIT) 13 #VAR 6 4 UV #IR

SET (STRING) 13 #VAR 7 1kEXP I'IR

INPUT 14 #ISE TAPE / #IR

14 #ISE 0 ,)DL #IR

OUTPUT 15 #ISE TAPEi #IR

CHANGE 16 / FROM TO AIR

HEIGHT 17 ItUV ' #IR

IF 18 #EXP #EXP #EXP i IR

CASE HEAD 19 4VAR IR

CASE SEQUENCE (CS) 20 #CON 4IR #CS

FIGURE 1? Instruction Records
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WHILE 21 -lEXP! 1IR t, . #IR

REPEAT 22 #EXP #IR t #IR

FOR 23 #VAR #IR # fIR

FOR LIST 24 'PEXP' U-D #EXP #EXP

DRAW LINE 25 1 ' UVLi IR

DRAW ARROW 25 2 INT ,iUVL #IR

25 3 #VAR #UVL! fIR

AXIS 26 X-Y I #AXS #IR

26 X-Y 2 #ISE. #IR

GRID 27 ">, fEXP #EXP #IR

LEGEND 28 #TIT STACKFRAMEL / /

LEGEND 28 #TIT LOC '#TITL #IR

FIGURE 13 Instruction Records
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GRAPH HEAD 29 "ITIT STACK rRAME

GRAPH TAIL 30 INTRP #EXP SORCE #ISE

TEXT HEAD 3#TIT

TEXT TAIL 32 #EXP #EXP #EXP

AXIS SPEC (AXS) 133; #TIT TYPEj EX? /

UNIT VALUE LIST,34 #UV #UV #UV #UV

FIGURE 14 Instruction Records
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EXPRESSION (EXP) 1I #NR 10

EXPRESSION LIST (EXPL) 1I #NR NEXT EXP NR

VARIABLE (VAR)

BASIC 2 #ISE EXPLi

UNIT 3 #1SE </

AXIS 4 #ISE

STRING 5 #ISE -"

FIGURE 15 Node Records
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CHARACTER STRING (CS) 6 ACHRS. LNG

CONSTANT (CON) 7 TYPEIVALUEi

DATA LIST (DL) HEAD 8 TYPE.

DATA LIST CHAIN 9'VALUE. .---- >---

IDENTIFIER STACK

ENTRY LIST 10 #ISE LNG

UNIT VALUE (UV) 11 #ISE, #EXP

TITLE (TIT) 12 1 I#CS

12 2 #ISE

TITLE LIST (TITL) 13 TIT ---- NEXT TITL NR

FUNCTIONS (FI - -

OPERATIONS OP, LEFTIRIGHT

FIGURE 16 Node Records
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Although much time and effort went into the language design,

many syntax constructs were not implemented in this version of ASGOL.

This section describes four important concepts in adding to or

changing the syntax to provide a more efficient and flexible

language. The first two constructs deal with features that should be

available for any block structured language: the definition of

program blocks, and procedures and functions. The last two describe

methods of extending the graphics capabilities of the language to

include and user defined 2- and 3-dimensional primitive objects.

Block Structures:

True block structured programming languages such as ALGOL allow

the definition of program blocks anywhere where instruction

statements (the BNF code in appendix A describes these as structure

commands) are allowed. Within these blocks, variables and constants

needed only for a paricular part of a subtask (the difference between

blocks and subtasks in defined below) can be declared. This

description correlates with the declaration and use of constants and

variables within subtasks and provides the same advantages: close

association between the variables and the code which uses them.

The syntax sentences of a block may be defined as:

<section block> ::= <block head> <declaration list>

<section structure command litt>

<block end>

<page block> ::- <block head> <declaration !ist>

<page stricture command list>
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<block end>

<segment block> ::< <block head> <declaration list>

<segment structure command list>

<block head> ::= BLOCK

<block end> ::= END BLOCK

The syntax of the block definitions were broken into the three

major categories SECTION, PAGE, and SEGMENT for the same reason block

lists of the iteratives and conditional instructions were divided.

These constructs provide syntactic error detection of the structure

commands available within the block, e.g., page margin instructions

are syntactically not allowed with a page or segment subtask. The

block definitions may now be included within the structure commands

as follows.

<section structure command> ::- <section block>

<page structure command> ::= <page block>

<segment structure command> ::- <segment block>

With the syntax definitions shown above, it is impossible to

define a subtask within a block. This prevents confusing blocks with

subtasks. Where subtasks describe the graphics representation level

of a program (e.g., a page subtask defines the structure of a single

page to be drawn), instruction blocks provide only the capability of

declaring a group of variables local to the structure commands that

require them. Also, while subtasks are given names, blocks are not.
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Procedures and Functions:

One of the most important constructs of any high-level language

is the declaration and use of functions and procedures within a

program. When used, these constructs produce compact source code.

Just as important as the description of procedures and functions are

the definitions of their parmeters and the method in which they are

passed both into and out of the procedures.

To distinguish between the declaration and invocation of

procedures and functions, procedures should be declared within the

declaration list of a b ',k or subtask. The syntactic structure

could be as follows.

<declaration list> ::= DECLARE
<constant declaration list>

<variable declaration list>

<procedure declaration list>

END DECLARE

<procedure declaration list> ::= <null>
<proceaure declaration list>

<procedure declaration>

/ <procedure declaration list>
<function declaration>

<procedure declaration> ::- <procedure head>

<procedure body>

<procedure end>

<procedure head> ::- PROCEDURE <identifier>
<parameter list>

<procedure body> ::- <section body>

/ <page body>

/ <segment body>

<procedure end> :: END PROCEDURE <identifier>

<function declaration> ::- <function head>
<function body>

<function end>

<function head> ::- FUNCTION <identifier> : <type>
<parameter list>

<function body> ::- <section body>
/ <page body>
/ <segment body>

<function end> ::= END FUNCTION <identifier>

<parameter list> ::- <null>
/ ( <identifier list)
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<parameter declaration list>
<parameter declaration list> ::- <parameter declaration>

/<parameter declaration list>
<parater declaration>

<parameter declaration> ::- <identifier list> :

<parater type> <type>

/<identifier list>
PROCEDURE

<parameter type> : VALUE

/ NAf
/ REFERENCE
/ FUNCTION

The parameter names, according to the syntax structure specified

above, are declared twice in the procedure (or function), the first

to define the order that the values will be accessel at invocation,

-the second to define the parameter type and the declaration type of

each name. The structure is similar to ALGOL except that all

identifiers must be given a parameter type. (ALGOL defines the

parameter type to be NANE by default.)

For value parameters, a value cell is created at invocation of

the procedure and the value passed into the procedure is stored

there. This provides protection against changing the value of a

variable argument.

For name parameters, the argument is defined to be an

exoression. The "formula" of the expression is passed into the

procedure and the interpreter delays evaluating the expression until

it is needed.

For reference parameters, the address of the argument is passed

into the procedure. The address is then used to reference the value

needed by the procedure. This parameter type is used to return
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values through the argument list. Figure 17 illustrates the three

different types of parameters used in a procedure. The value of the

expression C is determined when the array variable B is declared.

DECLARE

PROCEDURE exampproc (a,b,c,d)

a,c:NAME INTEGER
b:VALUE ARRAY (c] OF REAL

d:REFERENCE BOOLEAN
DECLARE . . . END DECLARE

END PROCEDURE examp_proc

END DECLARE

FIGURE 17 Procedure Declaration Example

To provide uniformity with the semantics of ALGOL, a procedure

or function should always be executed within the block environment in

which it is declared (known as static binding). Like variables, once

the subtask (or block) in which the procedure was declared has been

exited, the procedure is no longer available unless the name of thk

procedure is passed as an argument outside of the block.

To extend the graphics capabilities of the language, special

procedures could be syntactically defined by the system or by the

user to generate a high order of two and three-dimensional primitive

objects. These procedures are similar to the procedures described

abo-;e, except that they are invoked with the DRAW command within a

page or page segment subtask.
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,his version of ASGOL provides only the two-dimensional

primitives LINE and AR.ROW. These could be easily extended to include

such primitives as circles, ellipses, squares, rectangles, arcs, and

crosses. Unit value parameters of these primitives sh')uld define the

location and size of each type. User defined 2-9 primitives could

then be graphically generated using system primitives or other user

2-D primitive procedures. A 2-!) primitive could be syntactically

defined within the procedure declaration list as follows.

<procedure declaration list> :
<procedure declaration list>

<2-D declaration>
<2 -D declaration> ::- <2-d head> <2-D body>

<2-D end>
<2-0 head> : 2-D OBJECT <identifier>

<parameter list>
<2-D body> :~<declaration list>

<segment structure command list>
<draw instruction list>

<2-0 end> M.=E~ OBJr-CT <identifier>

The body of a 2-D object is restricted to include only the

declaration of constants and variables, segment structure commands,

and a sequence of draw instructions.

3-D primitives may be declared in a similar fashion.

<procedure declaration list> :
<procedure declaration list>

<3-D declaration>
<3-D declaration> ::- <3-1) head> <3-D body>

<~3-0 end>
<3-D head> :-3-D OBJECT <identifier>

<parameter list>
<3-D body> :- -2claration list>

<Segment structure command list>
<draw instruction list>
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<3-D end> ::- END OBJECT <identifier>

Unlike 2-D objects however, 3-D objects can eve transfornation

parameters implicitly allocated at the object's declaration. The

functions to perform the transformations could be built into the

system. These parameters define the rotation (alpha, beta, and

gamma), the translation, and the scaling of the object when the

procedure is invoked. The rotation parameters define the rotation of

the object in the X, Y, and Z plane respectively.
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APPE!' TX A

LR(1) BNF CODE OF ASGOL

<program> ::= <program head> <program body> <program end>

<program head> ::- program <program identifier>

<program identifier> ::= <identifier>

<program body> <declaration list> <section block list>

<program end> end program <program identifier>

<declaration list> <null>

/ declare <constant declaration>

end declare

<constant declaration part> :: constant

<constant declaration list>

<constant declaration list> ::- <constant declaration>

/ <constant declaration list>

<constant declaration>

<constant declaration> ::= <identifier> = <expression>

<variable declaration part>

/ variable

<variable declaration list>

<variable declaration list> ::- <variable declaration>

/ <variable declaration list>

<variable declaration
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<variable declaration> ::< identifier list> : <type>

<identifier list> := <identifier>

/ <identifier list> , <identifier>

<type> ::- <basic type>

/ <array type>

/ string ( <string size>

/ axis

/ unit

<string size> <expression>

<array type> ::= array <bounds> of <basic type>

<bounds> ::= <array bounds>

<array bounds> : < E expression>

/ <array bounds> , <expression>

<basic type> := integer

/real

/ boolean

/ character

<section block list> ::- <section structure command list>

<section listing>

/ <section structure command list>

<page listing>

/ <section structure cemmand list>
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<segment block list>

<section structure command list> ::- <null>

/ <section structure command list>

<section structure command>

<section structure command> : <assignment instruction>

/ <change instruction>

/ <page margin instruction>

/ char height instruction>

/ <if instruction typel>

/ <while instruction typel>

/ <for instruction typel>

/ <repeat instruction typel>

/ <case instruction typel>

<section listing> :< (section>

/ <section listing> <section>

<section> ::- <section head> <section body> <section end>

<section head> ::= section <section identifier>

<section identifier> ::- <identifier>

<section body> ::= <declaration list> <section block list>

<section end> ::- end section <section identifier>

<page margin instruction> ::= binding - <unit value>

/ grace - <unit value>

/ border - <unit value> by
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<unit value>

<page listing> :=<page>

/<page listing> <page>

<page> ::- <page head> <page body> <page end>

<page head> ::- page <page identifier> ( <page parameter>

<page identifier> :=<identifier>

<page body> S<declaration list> <page block list>

<page end> : end page <page identifier>

<page parameter> <: direction> , <margin set)

<number> , <location>

<location> :=<location signal> top

/<location signal> bottom

<location signal> :=left

/right

/inside

/outside

/<null>

<number> ::- <expression>

<direction> :-horizontal

/vertical

<margin set)>: left reset
/right reset
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/ center
/ <null>

<page block list> <page structure command list>

<instruction>

I <page structure command list>

<segment listing>

<page structure command list> ::= <null>

/ <page structure command list>

<page structure command>

<page structure command> :: <margin instruction>

/ <frame instruction>

/ <assignment instruction>

I <change instruction>

/ <char height instruction>

/ <if instruction type2>

/ <while instruction type2>

/ <for instruction type2>

/ <repeat instruction type2>

/ <case instruction type2>

<segment listing> :- <segment>

/ <segment listing> <segment>

<segment> ::- <segment head> <segment body> <segment end>

<segment head> := segment <segment identifier>

( <segment parameter>
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<segment parameter> : <unit value> , <unit value>

<unit value> , <unit value>

<segment identifier> ::- <identifier>

<segment body> ::- <declaration list> <segment block list>

<segment block list> ::= <segment structure command list>

<instruction>

<segment structure command list> ::- <null>

/ <segment structure command list>

<segment structure command>

<segment structure command> ::= <margin instruction>

/ <frame instruction>

/ <assignment instruction>

I <change instruction>

/ <char height instruction>

/ <if instruction type3>

I <while instruction type3>

/ <for instruction type3>

I <repeat instruction type3>

/ <case instruction type3>

<segment end> ::= end segment <segment identifier>

<margin instruction> ::- margin <margin values>

<margin values> ::- ( <unit value> , <unit value>

<unit value> := <expression> <units>
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<units> :=inch

/inches

/<unit identifier>

<axis definition> :: (<title> ,<type axis> ,<min>

<max> , <delta> ,<ticks>

<title> :-<character string>

/<string identifier>

<type axis)> : linear

/log

/logarithmic

/month

<min> :-<expression>

/<month>

<max> :=<expression>

/<month>

<month> :=Jan

/feb

/mar

/apr

/may

/Jun

/Jul

/aug

/sep
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/Oct

/nov

/dec

<delta> : <expression'

<ticks> :=<expression>

<frame instruction> :=frame <frame thickness>

<frame thickness> :-(<expression>

<assignment instruction> :=<set instruction>

/<input instruction> *
/<Output instruction>

<set instruction> :-set <variable> - <expression>

/set string <section identifier>'

<expression>

/set unit <unit identifier>=

<unit value>

/set axis <axis identifier>

<axis specification>

<axis identifier> :-<identifier>

<unit identifier> :=<identifier>

<section identifier> :=<identifier>

<axis specification> :=-<axis definition>

/ title -<title>
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/ type <type axis>

/ mn = <min>

/ max = <max>

/ delta = <delta>

/ ticks - <ticks>

<if instruction typel> ::= <if head> <true branch typel>

<false branch typel> end if

<if instruction type2> := <if head> <true branch type2>

<false branch type2> end if

<if instruction type3>: <if head> <true branch type3>

<false branch type3> end if

<if head> ::- if <expression>

<true branch typel> ::= then <declaration list>

<section block list>

<true branch type2> := then <declaration list>

<page block list>

<true branch type3> : then <declaration list>

<false branch typel> :: else <declaration list>

<section block list>

<false branch type2> ::- else <declaration list>

<page block list>

<false branch type3> ::= else <declaration list>
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<segment block list>

<while instruction typel> ::= <while head> do

<section block list>

end while

<while instruction type2> ::= <while head> do

<page block list>

end while

<while instruction type3> ::= <while head> do

<segment block list>

end while

<while head> ::- while <expression>

<for instruction typel> ::= <for head> <section block list>

end for

<for instruction type2> ::= <for head> <page block list>

end for

<for instruction type3> :: <for head> <segment block list>

end for

<for head> ::= for <variable> - <expression> to

<expression> <by clause> do

/ for <variable> - <expression> down

<expression> <by clause> do

<by clause> ::- by <expression>
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<repeat instruction typel> :: <repeat head>

<section block list>

end repeat

<repeat instruction type2> ::= <repeat head>

<page block list>

end repeat

<repeat instruction type3> :< (repeat head>

<segment block list>

end repeat

<repeat head> ::- repeat until <expression>

<case instruction typel> ::= <case head> <case seq typel>

end case

<case instruction type2> :< case head> <case seq type2>

end case

<case instruction type3> :- <case head> <case seq type3>

end case

<case head> ::- case <variable> of

<case seq typel> ::- <case list> riE. - ation list>

<section block list>

/ <case se, typel>

<case list> : <declaration liqt>

<section block list>

<case seq tvpe2> ::- <case list> : <declaration list>
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<page block list>

/ <case seq type2>

<case list> : <declaration list>

<page block list>

<-i e seq type3> : <case list> : <declaration list>

<segment block list>

/ <case seq type3>

<case list> : <declaration list>

<segment block list>

<case list> :: <int const list>

/ <character string list>

/ others

<character string list> ::- <character string>

/ <character string list>

<character string>

<variable> ::- <identifier> <array specification>

<array specification> ::- <bounds>

<input instruction> ::- input <identifier> <source>

<source> :: terminal

/ tape <int const>

/ <direct input>

<direct input> ::= data / <constant set> /

<constant set> :: <int const set>
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/ <real const set>

/ <boolean const set>

/ <character string>

<int :onst set> <int const> <list nurber>

S<int const set>

<int const> <li t ri-ber>

<real const set> : <real const> <list nuT- >

/ <real const set>

<real const> <lis: number>

<boolean const set> :: <boolean value> <list number>

/ <boolean const set>

<boolean value> <list number>

<list number> <int const>

<output instruction> ::- output <identifier> <port>

<port> ::= terminal

/ tape <int const>

<change instruction> ::- change <from set> to <to set>

<from set> <:- case set> roman

/ <case set> italic

/ <case set> script

<to set> := special

/ math

/ instruction
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/ <case set> greek

/ <case set> russian

/ hebrew

<case set> :: upper

/ lower

I

<character height instruction> ::= height = <unit value>

<expression> :- <condition expression>

/ <condition expression> <logic operator>

<condition expression>

<condition expression> =<simple expression>

/ <condition expression>

<condition operator>

<simple expression>

<simple expression> ::= <term>

/ + <term>

/ - <term>

/ <simple expression> + <term>

/ <simple expression> - <term>

<term> ::- <factor>

/ <term> * <factor>

/ <term> / <factor>

/ <term> mod <factor>

/ <term> rem <factor>

<factor> :< primary>
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<factor> ** <Primar',>

-r-m.-3r'> : not <primlary>

/( <expression>

/<va r iable >

/<constant>

/<character string>

Ifloat ( <expression>

/integer (<expression>

/fraction (<expression>

/sin (<expression>'

/cos (<expression>

/tan C<expression>

/ mv sin C<expression>

/ mv cos (<expression>

/ mv tan (<expression>

/absolute C<expression>

/point C<section identifier>

/origin C<x or y>)

/area C <x or v>

/reference ( <section identifier>

<c-haracter string>

/string (<expression>

/length (<section identifier>

<x or vJ> :=x

'v

<logic overator> :-<
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/ <=

/ /=

/ >=

/>

<condition operator> ::= and

/ or

/ xor

<constant> <int const>

/ <real const>

/ <boolean value>

<int const list> ::= <int const>

/ <int const list> , <int const>

<boolean value> :: true

/ false

<instructions> ::= <draw instructure list>

/ <graph instruction>

/ <text instruction>

<draw inst'uction list> ::= <draw instruction>

/ <draw instruction list>

<draw instiuction>

<draw instruction> ::- draw arrow <arrow style>

<unit value> ,<unit value>

<unit value> , <unit value>
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/ draw line ( <unit value> , <unit value>

, <unit value> , <unit value>

<arrow style> <int const>

/ <variable>

<graph instruction> ::= <graph preparation instruction list>

graph <title option>

(stack form> <frame option>

<interpolation type>

<number plots> , <plotting poi-nts>

<graph preparation instruction list> ::= <null>

/ <graph preparation instruction list>

<graph preparation instruction>

<graph prep instruction> :: <graph id instruction>

/ <legend instruction>

/ <axis instruction>

<graph id instruction> grid <title option>

C <expression> , <expression>

<legend instruction> ::- legend ( <location option>

<title list>

<location option> ::= <location>

<title list> :- <title>

/ <title list> , <title>

<axis instruction> ::= <axis> - <axis definition>
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/ <axis> <axis identifier>

<axis> ::= <x or y> axis

<title option> ::- <title>

<stack form> ::- stack of <int const>

<frame option> ::= framed

<interpolation type> := linear

/ step

/ bar

/ stacked bar

/ spline

/ smooth

/ pie

<number plots> ::= <expression>

<plot points> :< <identifier>

/ <direct input>

<text instruction> ::- text ( <Justification> <text style>

. <section name> , <start>

<length> , <size>)

<text style> ::= simple

/ cartog

/ complx

/ duplx

/ gothic
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III

scmplx

simplx

/ triplx

<string name> ::= <string identifier>

I <character string>

<start> <expression>

/ next

<length> := <expression>

/ continue

<size> ::- <unit value>

<Justification> := <horizontal format> justified

/ <vertical format> centered

<horizontal format> :: left

/ right

/ l-r

<vertical format> : top

/ bottom

/ <null>

<null> ::-
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APP,'MIX B
SYSTEM COMMANDS

There are four general commands that the system presently

supports. These are CREATE, RUN, LIST, and END. All of the system

commands were developed with the intention that later versions of

this system would support interactive capabilities.

The CREATE command is used to transfer a program from the

terminal (or input file) to the program input file. This provides an

alternative to attaching a file containing the program text. A file

TAPE7 is created with the CREATE command. Lines are read from the

terminal until a "$" is detected in the first column of the input

line. An end-of-file marker is then written to the program input

file and a ready-prompt "CO4MAND=" is issued.

The RUN command tells the system to begin parsing the program

stored in TAPE7. The subtask name following the RUN command

specifies the block of graphics to be generated in the program. If

the subtask name is the program name, the graphics for the complete

program is generated; for section and page subtasks (defined in

appendix C under Beginner's Guide), the graphics for that specific

task is generated.

For page segment subtasks, the graphics instructions are drawn

within the complete domain of the page. Frame and margin

instructions defined within the page, but not within the segment, are

ignored.

The LIST command copies all or any part of the program input

file (TAPE7) or the program output file (TAPEI0) to the terminal. To

list the complete file, the commands are:
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LIST, INUT,ALL
LIST,OUTPUT,ALL

and to list specific lines of the file:LISTINPT,<#lins>,<taring in4
LIST,OUNPUT,# lines>,<starting line>

The END command stops execution of the program.
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APPENDIX C
PROGRAMMIN G GUIDE

One of the most difficult tasks in designing a new high-level

language is not in the design of the instruction set that is

available in the language, nor is it in the impleme:tation of an

interpreter or compiler to generate correct results from any

grammatically correct program, but it is the description of the

language in English terms. T"his is not to say that the design and

implementation of a language are not important. But, without a

complete description of the language for a user to follow, he or she

cannot be expected to write grammatically correct programs in an

efficient manner using the complete utilities available.

However, if the language is designed to allow the maximum amount

of freedom in structuring and if the instruction set available is

minimized to accomplish the desired results, as was the design

purpose of this language, this task is simplified.

This appendix is divided into three sections: the beginner's

guide, program enhancements, and string manipulation. The beginner's

guide gives an introduction to program structuring and common

instructions available in the language for generating simple graphs

and text. The section on program enhancement discribes the use of

constants and variables, the instruction set used for declaring and

defining variables, and the structure of arithmetic evaluations. The

third section discusses the instructions that define the various

fonts and styles for characters drawn to the screen.

i. Beginner's guide

Before discussing the structure of a program for this graphics
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language, several terms used in this appendix need to be defined.

The definitions of these terms should not be considered universal in

scope, since several of the terms pertain specifically to this

language.

ALGORITHM: An unambiguous step by step sequence of instructions

used to describe how to perform a task or procedure. A food recipe

is an example of an algorithm.

FLOWCHART: A directed network of instruction blocks completely

connected by unidirectional paths between the blocks.

TOP-DOWN BLOCK STRUCTURING: A step by step refinement of an

algorithm into successively smaller tasks or subtasks.

TASK: A definition of a desired result.

PROGRAM: Any of various methods used to define the order in

which tasks are to be accomplished. A program varies from an

algorithm in that the program is written in the format of a specific

language.

PAGE SUBTASK: The set of instructions used to generate a single

Dage of graphics.

SUBPLOT AREA: The rectangular area in which all text, lines, and

graphs are to be drawn for the page or page segment.

PHYSICAL ORIGIN: The lower left corner of the subplot area

defined for the page or page segment.

LANGUAGE INSTRUCTION: A sequence of words and symbols

grammatically specified by the language and used to perfor-n a

sDecific part of the subtask in which it is embedded.

PARAMETER: A value used by an instruction to perform an

operation.
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RESERVED WORD: Any of the 166 English words and legal symbols

used for special significance in the language. A complete list of

these words and symbols are attached at the end of this appendix for

the user.

IDENTIFIER: A sequence of letters and digits not separated by

blanks, declared by the user for a single specific purpose. There

are four restrictions upon the use of identifiers:

1) an identifier must begin with a letter (A through
Z) ;

2) only letters, digits (0 through 9), and the
underscore (_) are allowed in legal identifiers;

3) the length of the identifier must not exceed 10
characters; and

4) an identifier cannot be a reserved word.

Other than these restrictions, a user has complete freedom in

defining nam~es for identifiers.

LITERALS: There are four classes of literals: integer literals,

real literals, character literals, and boolean literals.

INTEGER LITERAL: The character representation of a finite number

of consecutive digits. Examples are: 1026 , 0 , -81 , 1000.

REAL LITERAL: The character representation of an integer number

followed by a period () And a fractional value. Examples are:

3.14159 , -16.103 , .10 ,1. , 100000..

CHARACTER LITERAL: A single letter, digit, or symbol enclosed in

double quotations. Examples are:

CHlARACTER STRING: Any finite sequence of characters (letters,

digits, or symbols) enclosed in double quotations ("). Examples are:

"THIS IS A STRING" produces the string:

TIlS IS A S7RING
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produces the empty string of length 0

"""1 produces a single double quoation "

It is important to note that any use of the double quotation

within a string must be printed twice for each double quote

desired,

"""""" produces a double double quotation ""

produces a single quotation

"The & symbol is used to continue"&

"a string to the next line."

In drawing characters on the screen, six special characters are

used to define the font to be used. These characters are (, ), +, -,

*, and /. To print any of these characters, enclose them in

parentheses(i.e. To print a "(" on the screen, the character sequence

would be "(()". In section III of this appendix, it will be shown how

shift characters are used to determine fonts.

BOOLEAN LITERAL: the two literals TRUE and FALSE that define the

result of a condition.

COMYE.TS: Comments begin with the symbols /* anywhere within a

program and end with the two symbols typed in reverse: */. They have

no effect up-n the execution of the program and are used for the sle

purpose of program documentation. It helps the reader understand

wat the program is doing. Examples of comments are:

/* this is a comment */

, . , i ... I 1



1 * comments can be

formatted in almost any style

and can be stretched across any

number of lines.

A special caution should be made to insure that all comments end

with the */ symbols. Without these to end a comment, program

instructions will be bypassed between comments.

The language provides a second method of comments. With the

double character set -- , all text to the end of the line is treated

as comments.

Program Block Structuring:

The first step in writing a program for this graphics language

(or for any other language) should be to define the subtasks of the

program in a top-down structure. A subtask is a fragment of the

program such that the sequencial execution of all of the subtasks

represent the complete program. Each subtask can be divided into

smaller subtasks, if necessary, which again can be divided into even

smaller subtasks, until a point is reached when each subtask

represents the block of instructions used to generate graphics for a

single page (called a page subtask). This block structuring or

nesting of subtasks within larger tasks allows versatility in the

program, discussed in the next section.

All programs in this language begin with the reserved word

PRO'RAX followed by a unique identifier to define the name of the

program. The program halts on the recognition of the reserved words

EN: PRYRkM followed by the name of the program and a period .).
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A program subtask (but not a page subtask) begins with the

reserved word SECTION followed by an unique identifier to name the

section. The section ends with the reserved words END SECTION

followed by the name of the section. As can be seen in figure 18,

section subtasks can be declared within sections.

PROGRAM progname

SECTION sec name_1

ENM SECTION secname_1
SECTION sec name_2

SECTION internal_1

END SECTION internal I
SECTION internal_2

END SECTION internal 2

END SECTION sec name_2

END PROCRA-M prog_name

FIGURE 18 Program Block Structure

A page subtask begins with the word page, followed by a unique
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identifier to define the name of the page, and a page construct list.

The page ends with the reserved words END PAGE followed by the name

of the page.

The page construct list is used to define the physical

construction of that page. It is a list of four parameters enclosed

in parentheses and separated by commas. These parameters will be

denoted as the page direction, the page margin, the page number, and

the page number location respectively. (It is important to note at

this point that the order of these parameters, as well as the

parameters used in all other instructions, is important. Any

variation in the order specified will produce errors.)

The first parameter, the page direction, determines whether the

page format is to be HORIZONTAL or VERTICAL by placing one of these

two reserved words as the parameter. If the format is horizontal,

the page dimension will be 11 inches in the horizontal direction and

8 1/2 inches in the vertical direction. If the format is vertical,

the dimensions are reversed: 11 inches in the vertical direction, F

1/2 inches in the horizontal direction. To keep from getting

confused, just remember that the longest side (11 inches) is always

in the direction specified in the parameter.

The page margin defines how the grace margin of the paqe is to

be set up. If the reserved words LEFr RESE are used as the

parameter, the margins of the page will be set to be 1 inch on the

upper, lower, and the right sides of the page, and 1 112 inches on

the left side. (In the horizontal format, the upper and lower edges

are the 11 inch sides of the page; in the vertical format, they are
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the 8 1/2 inch sides.) The 1 1/2 inch margin along one side of the

page is called the binding margin ind allows space for binding the

pages together into book form. I the reserved words RIGHT RTSET are

used, the grace margin will be set to 1 inch along the upper, lower,

and left sides of the page, and 1 1/2 inches along the right. This

resets the binding margin to the right side of the page. if the

reserved word CENTER is used as the parameter, the subplot area will

be centered on the page with 1 inch margins on all four sides.

The page number parameter can be either an integer -'alue, a real

value, or a character string. If the integer value 0 is used, no

page number will be printed. In the case of a character string, a

-maximum of twenty characters are allowed. If more than twenty

characters are used, a warning will be issued, and only the first

twenty will be printed.

The last parameter, the page location, specifies any of six

positions on the page the page number is to be printed. If the

reserved word TOP is used as the parameter, the page number will be

centered and printed at the top of the page, 1/2 inch fro. the edge.

If TOP is preceded by the reserjed word LEFT, the number will be

printed at the left top edge, beginning directly above the left

margin of the page (1 1/2 inches from the left edge for .eft binding

margins, I inch from the left edge for right binding marpins or

centered). If TOP is precede] by the reserved word RIGHT, the number

will be printed at the right top edge, ending directly above the

right margin.

For pages that are not CENTERed (that have a binding margin)
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TOP may be preceded by one of two other resurvred words: INSIDE or

OUTSIDE. If INSIDE TOP is used, the page number will be printed on

the inside of the page, either beginning or ending directly above the

binding margin, depending on whether the page has a left binding

margin or a right binding margin respectively. If OUTSIDE TOP is

used, the number will be printed directly opposite of the binding

margin.

If the reserved word BOTTOM is used as the page location

parameter, the page number will be centered at the bottom of the

page, 1/2 inch above the lower edge. The reserved words LEFT,

RIGHT, INSIDE, and OUTSIDE also can be used in the same manner as in

-Top.

Figure 19 illustrates two ways pages can be defined. In the

first page, VERT-SET, the page format is vertical, the subplot area

is centered on the page, and the page is not numbered. In HORIZSET,

the page format is horizontal, a binding margin is defined on the

left side of the page, and A-5 is printed at the top center of the

page.
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SECTION example

PAGE vertset(VERTICAL,center,O,right bottom)

END PAGE vert set
PAGE horizset(HORIZONTAL,left reset,"a-5",top)

END PAGE horiz set
END SECTION example

FIGURE 19 Page Examples

Often, it is necessary to draw several graphs, or to mix graphs

and text, on a single page. To give this capability, the page

subtask can be subdivided into page segment subtasks. Each page

segment subtask begins with the reserved word segment, followed by a

unique identifier (to define the name of the segment) and a segment

parameter list. The segment ends with the reserved words END

SEGMENT, and just as in section and page subtasks, it must be

followed by the name of the segment.

The segment parameter list is a list of four integer or real

values, each followed by the reserved word INCH or INCHES. Each

parameter is separated by a comma and the complete parameter list is
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enclosed in parentheses. These four parameters specify the size and

location of the segment within the physical page subplot in which

the subtask is to be performed.

The first parameter is the distance in the X direction from the

physical page origin to the start of the segment subplot area. (From

this point on, the X direction will refer to the dimension of the

page o:: segment along the horizontal and the Y direction along the

vertical dimension of the page or segment.) The second parameter is

the distance in the X direction from the physical page origin to the

end of the segment subplot area.

The third parameter is the distance in the Y direction from the

nuhysical page origin to the start of the segment subplot area. And

the fourth parameter is the distance in the Y direction to the end of

the segment subplot area.

These distances are specified by either integer or real values

and are in inches. Several precautions should be considered in

defining the segment subplot area. First, the values of the second

and fourth parameters must be greater than the values of the first

and third parameters respectively. This should seem reasonable since

the end of the subplot area cannot be defined to be before the

beginning. Second, none of the four parameters values can lie

outside of the physical page, and for this reason, none of the four

parameters can have negative values.

As an example of the structuring of a program as discussed so

far, consider a single page task program that creates two graphs

drawn side by side in the upper half of the page, leaving the lover
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half is to be reserved for a text description of the graphs. The

block structuring of this program is shown in figure 20. The reader

should study this structuring before continuing on to the next

subsection.

PROGRAM example-1

PAGE sampledraw(VERTICAL,CENTER,"sample" ,TOP)

SEGMENT graphl(O INCHES,4.25 INCHES,
5.5 INCHES, 11 INCHES)

GRAPH
END SEGMENT graph l
SEGMENT graph2(4.25 INCHES,8.5 INCHES,

5.5 INCHES,11 INCHES)

GRAPH
END SEGMENT graph2
SEGMENT texter(O INCHES,8.5 INCHES,0 INCHES,5.5 INCHES)

TEXT
END SEGMENT texter

END PAGE sampledraw
END PROGRAM example_1

FIGURE 20 Segment Examples

In the above program listing, EXAM4PLE_1 is the name of the

program, SAMPLEDRAW is the name of the page, and GRAPHI, GRAPH2, and

TEXTER are segment names. The page format is vertical with a 1

inch margin on all sides. The string SAMPLE is the page number and
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is printed at the center top of the page. The GRAPH1 subplot area is

the upper left quarter of the page; CRAPH2's subplot area is the

upper right quarter of the page; and TEXTER 's subplot area is the

lower half of th . page.

The reserved words GRAPH and TEXT are used in this example to

represent the points at which these instructions occur. The actual

use of these instructions will be discussed later in this section.

Structure Commands:

In this section, two structure commands will be presented.

These instructions are only allowed within a page or page segment

subtask

The margin instruction begins with the reserved word MARGIN, and

may be followed by two parameter values separated by a comma and

enclosed in parentheses. These parameter values are integer or real

values followed by the reserved word INCH or INCHES. These

parameters reset the subplot area by defining the size of the margin

for both the X and the Y domains respectively. Figure 21 shows an

example of this instruction. In this figure, the margin instruction

redefines the physical origin, which was previous to the margin

instruction, at 1 inch in the X direction and 1 inch in the Y

direction, to be 2.5 inches and 3 inches respectively. These values

were obtained by adding the margin values (1.5,2) to the existing

physical origin (1,1). The margin instruction also redefines the

subplot area, which was 6 inches vertically and 9 inches horizontally

prior to the margin instruction (remember that VERTICAL defines the

page size to be (8.5,11) and RIGHT RESET uses a 1.5 inch binding

90



margin and a 1 inch grace mErgin), to be 3 inches (6 - (1.5 x 2)) and

5 inches (9 - (2 x 2)).

PAGE example 2(VERTICAL,RIGHT RESET,
MARGIN(1.5 INCH,2 INCH)

FIGURE 21 Margin With Parameters

If the parameters are not specified (i.e. Only the reserved word

MARSIN is used), a default value of 5% of the subplot area dimension

iF, used for both directions. In figure 22, the margin instruction

-.ll produce default values of .3 inches (6 times .05) in the X

direction and .45 inches (9 times .05) in the Y direction.

PAGE example_2(VERTICAL,RIGHT RESET, .

MARG IN

FIGURE 22 Margin Without Parameters

Special precautions should be made to insure that the margin

instruction does not redefine one or both of the subplot dimensions

to be less than zero. If so, errors will be generated. A simple
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arithmetic check can be made to insure this does not happen. The X

dimension must be greater than twice the X value prior to the

instruction and the Y dimension must be greater than twice the Y

value. Since the default values use a percentage of the subplot

area, errors should not result unless too many margin instructions

are made within a subtask.

The margin instruction also resets the physical origin of the

subtask. Although figure 23 may look harmless, it will produce

errors since after the margin instruction, the subplot area

dimensions are 3 inches (6 - (2 x 1.5)) and 5 inches (9 - (2 x 2))

and the second and fourth parameters of the segment block are out of

the page bounds!

PAGE example_3(VERTICAL,RIGHT RESET, .

MARGIN(1.5 INCH,2 INCH)
SEGMENT(O INCH,3.5 INCH,2 INCH,6 INCH)

FIGURE 23 Margin Error Example

The frame instruction is used to draw a physical frame around

the defined subplot area of the subtask. It begins with the reserved

word FRAME and may be followed by an integer value enclosed in

parentheses. This integer value represents the thickness of the

frame to be drawn. If the parameter is not specified (i.e. Only the

reserved word FRAME is used), a default value of a single line is

used. The integer value in the parameter cannot exceed 25. If a
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thickness greater than 25 lines is desired, consecutive frame

instructions can be used.

Like the margin instruction, the frame instruction affects the

physical origin and subplot area of the subtask, except on a much

smaller scale. The physical origin is redefined by 1/100th of an

inch for every line drawn, and consequently, the subplot area is

redefined to be 2/100th of an inch less in both dimensions for every

line drawn. For example,

FRAME(25)

will produce a frame 1/4 of an inch (25 times 1/100) thick; the

physical origin will be redefined as having .25 inches added to both

-directions, and the subplot area will be Ott>.5 inches less in both

dimension lengths.

Graphics Instructions:

Once a page or page segment subtask has been defined and the

margin and frame, if desired, are specified, the system is ready to

draw the graphics for the subtask. There are three basic types of

graphics that are available: lines and arrows, graphs, and text.

For each subtask, only one of these three can be used. In other

words, these basic types cannot be mixed within a subtask. However,

if a combination of these types within a page or segment area is

desired, the area can be defined in several page segment subtasks.

For example, if text is to be drawn along with a graph on a page

called EXAMPLE_3, the format may be as shown in figure 24.
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II

PAGE example 3(VERTICAL,LEFT RESET, . . .
SEGMENT part 1(0 INCH,6 INCH,0 INCH,9 INCH)

graph(.. .
END SEGMENT part_1
SEGMENT part_2(0 INCH,6 INCH,0 INCH,9 INCH)

TEXT(
END SEGMENT part_2

END PAGE example 3

FIGURE 24 Text and Graph Combination

In this example, note that both page segment subtasks called

PART_1 and PART_2 define the dimensions to be that of the full page.

Also, no margin or frame was defined at the head of the page, since

these can be defined within the segment subtasks.

Line and Arrow Instructions:

A sequence of straight lines can be drawn anywhere within a page

or page segment subtask by a series of line instructions. A line

instruction begins with the reserved words DRAW LINE followed by four

parameters enclosed in parentheses. The instruction's first two

parameters are the X and Y coordinates of the starting location of

the line specified in inches from the physical origin of the subtask.

The third and fourth parameters are the X and Y coordinates of the

ending location of the line from the physical origin of the subtask.

It is insignificant which end of the line is specified first, as long

as both coordinate points lie within the range of the subtask's
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dimension. If a point lies outside of the subplot area, the line is

clipped at the subplot edge. Figure 25 shows the use of this

instruction. In this example, the page is defined to be centered and

horizontal, defining the dimensions of the page to be 9 inches by 6

1/2 inches in the X and Y direction respectively. The margin

instruction then redefines the X direction to be the same as the Y

(6.5 inches) by the formula ((9 - 2.5) divided by 2). Note that the

Y dimension is not changed by passing 0 INCHES as the parameter. The

line instructions are then used to draw a diamond shaped box within

the subtask.

PAGE example_4(HORIZONTAL,CENTER,
MARGIN (1.25 INCHES,O INCHES)
DRAW LINE (0 INCH, 3.25 INCH,

3.25 INCH, 0 INCH)
DRAW LINE (3.25 INCH, 0 INCH,

6.5 INCH, 3.25 INCH)
DRAW LINE (6.5 INCH, 3.25 INCH,

3.25 INCH, 6.5 INCH)
DRAW LINE (3.25 INCH, 6.5 INCH,

0 INCH, 3.25 INCH)
END PAGE example_4

FIGURE 25 Line Instruction

Arrows are drawn in a similar fashion. In fact, the two can be

mixed in any sequence. An arrow instruction begins with the reserved

words DRAW ARROW, followed by an integer value representing the arrow

style, and four parameters enclosed in parentheses. The four

parameters are the coordinates of the starting and ending locations
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of the arrow in the same form as in the LINE instruction, except that

the direction the arrow is drawn is significant. Unless the

direction of the arrow heads is specified to point in both directions

(see the description of the integer value below), the arrow head is

drawn to the end location of the arrow (the third and fourth

parameter location).

The integer value in the instruction is a two digit integer used

to describe the arrow style. The first, a digit between 0 and 3,

describes the form of the arrow head. The second digit, also between

0 and 3, defines the location of the arrow head. Figure 26 shows the

forms and locations of arrow heads. Note that if the second digit is

0, the arrow has no head and this reduces to a simple line with the

same parameters.

Forms: 0 solid head No

I white head

2 open head

3 closed head

Locations: 0 none

I end point O

2 both points s

3 both toward end P

FIG3PE 26 Arrow Forms and Locations

Figure 27 gives an example of the use of arrows and lines

combined. The page format and draw instructions are the same as

those in figure 25. Arrow instructions have been added between line
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instructions to show that thep s,--quence order is unimportant. Figure

28 show- tiie result of this page subtask.

PAGE example 4(HORIZONTAL,CENTER, .4
MkP - IN( 1.25 INCHES,O INCH)
DRAW LINE(O INCH,3.25 INCH,3.25 INCH,O INCH)
DRAW LINE(3.25 INCH,O INCH,6.5 INCH,3.25 INCH)

DRAW ARROW 01 (3.25 INCH,3.25 INCH,I

DRAW ARROW 32(0 INCH, 6.5 INCH,

6.5 INCH,6.5 INCH)
DRAW4 LINE(6.5 INCH,3.25 INCH,3.25 INCH,6.5 INCH)
DRAW ARROW 03(0 INCH,0 INCH,3.25 INCH,6.5 INCH)
DRAW LINE(3.25 INCH,6.5 INCH,O INCH,3.25 INCH

END PAGE example 4

FIGURE 27 Line and Arrow Instructions
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page border

physical origin

after MARGIN
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FIGURE 28 Lines and Arrows Example

Graph Instruction:
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The graph instruction is a general purpose instruction used to

draw any of a number of types of graphs. Only the basic types:

linear, bar, and pie graphs w~ill be discussed in this section. Other

types of graphs will be discussed in the next section. At this

point, the description of this instruction will be limited to these

basic types.

Before discussing the graph instruction, there are three types

of instructions, used to prepare the subplot area for a graph, that

need to be described. These instructions must be placed immediately

prior to the actual graph instruction. However, not all of these

instructions are necessary to draw graphs but can be used to enhance

the style of the graph.

The first type of instruction defines the X and Y axes of a

graph. For linear and bar graphs, both axes must be defined. If

these instructions are inserted prior to a pie graph, they will have

no effect. The definition of an axis is given in five parts: the

title of the axis, the type of axis, the minimum and maximum values,

a step increment called delta, and the number of tick marks between

each step.

The title of the axis is a user defined character string

(remember a character string is enclosed in double quotations) of 80

characters or less. For the X axis, the character string is printed

directly below the axis and centered within the subplot area. For

the Y axis, the string is printed 90 degrees from the horizontal,

directly to the left of the Y axis, and centered within the subplot

area.
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There are three types of axes available to the user: LINEAR, LOG

or LOGARITHMIC, and MONTH. For a linear axis, the minimum and

maximum values may be integer or real and represent the actual values

of the end points of the axis. For a logarithmic axis, the minumum

and maximum values are integers representing the exponent values of

the end points (10 to the power of). For month axes, the minimum and

maximum values are the first three letters of the month (i.e. MAkY,

JU14, JIML, and AUG) for the end points of the axis.

The delta is an integer value representing the number of

incremental steps of the axis starting with I at the minimum value.

When the axes are drawn in the subplot area, the values at each step

will be drawn, as well as the minimum and maximum values of the axes.

In defining the X axis of a linear or bar graph, the delta also

represents the number of points to be plotted within the graph.

Examples of the use of the delta are shown in figures 29 and 30.
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X AXIS -("x axisl",MONTH,DEC,DEC, 5,2)
Y AXIS -("y axisl",LINEAR, 0,100,6,0)
GRAPH ( LINEAR,

C!

°i'
0

SUBPLOT

AREA -

a|

,rJN 5v "
x fAXISt

FIGURE 29 Linear Axes Definition
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Y AXIS "("log",LOG,-1,7,5,1)
X AXIS -("linear",LINEAR, -100,100,3,0)
GRAPH(BAR,

SUBPLOT
AREA T.€

LIA

__ __ __ __ _ __ __ __ __

FIGURE 30 Bar Axes Definitons

The number of tick marks is in integer value that represents the

number of marks placed evenly between each incremental step of the

axis. Ticks do not effect the plotting of points on the graph, but

are used for plotting enhancements. If tick marks are used, the

values at the tick marks are not printed.

To define the X axis, the instruction is of the form:

X AXIS -(title,type,min,max,delta,ticks)

where title is the character string name of the axis; type is one of

the reserved words: LINEAR, LOG, LOGARITHMIC, or MONTH; min and max

are: integer or real values for LINEAR type axes, integer values for

LOG or LOGARITMIC type axes, or the first three letters of a month
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for MONTH type axes; delta and ticks are integer values. The

reserved words LOG is a short form of LOGARITHMIC.

To define the Y axis, the instruction is of the form:

Y AXIS -(title,type,min,max,delta,ticks)

where each of the parameters are the same as in the X axis

definition above.

In figure 29, the instructions set up the axes system within

the subplot area for a linear graph. In figure 30, the instructions

set up the axes systems within the subplot area for a bar graph. For

bar graphs, the minimum and maximum points of the X axis are spaced

evenly within the axis to prevent bunching-up of the bars as they are

-being drawn at these points. Note also that it is not important

which axis is defined first.

The second type of instruction, the legend instruction, is

optional and may be used with any of the graph types. In a linear

graph, a legend is used to identify the types of curve markers to

each plot of the graph. In a bar graph, a legend identifies the

shade styles to each bar plot drawn. In a pie graph, the legend is

used to identify each of the pie sections to user defined character

strings.

The legend instruction may be specified in any one of four

various forms. These are:

LEGEND (title list)

LEGEND (location,title list)

LEGEND title (title list)

LEGEND title (location,title list)
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The title list, used in all four variations, is the list of

character strings (enclosed in double quotations), separated by

commas. The length of these strings must be 20 characters or less.

If the length is greater than 20, only the first 20 characters will

be used. These character strings are the user defined strings

identifying the plots on the graph. This sequence of character

strings must be in the same order as the curves or bar plots being

plotted on the graph.

The location parameter, used in the second and fourth

variations, specifies the positioning of the legend box within the

subplot area of a linear or bar graph. Any of the reserved word

-sets: LEFT TOP, TOP, RIGHT TOP, LEFT BOTTOM, BOTTOM, or RIGHT BOTTOM

may be used as this parameter. If the location of the legend is not

specified (in the first and third variations), the default is RIGHT

BOTTOM. It is important to remember that points will not be plotted

within the legend box if a legend is used; therefore, precautions

must be made in positioning the legend box within the subplot area.

The title in the third and fourth variations after the reserved

word LEGEND is a character string of 20 characters or less used to

redefine the name of the legend. By default, "LEGEND" will be

printed at the top of the legend box.

For a pie graph, if either the optional legend title or the

location is used within the legend instruction, they will be ignored

since the character strings are placed within the corresponding pie

segments.

The third preparation instruction, the grid instruction, is also
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optional and may be used with either the linear or bar graph. The

grid instruction is used to draw solid or dotted lines across the

subplot area along either the X axis, the Y axis, or both. The grid

instruction begins with the reserved word GRID followed by two

integer values enclosed in parentheses and separated by a comma. The

two integer values represent the number of lines to be drawn per

incremental step of the axis: the first for the X axis, the second

for the Y axis. If the value is 0, no lines will be drawn. If the

value is 1, a line is drawn at every step. If the values are

positive, solid lines will be drawn. To draw dotted lines, the

values must be negative (i.e. -2 will draw two dotted lines per

-incremental step of the axis).

Once the axes (for linear and bar graphs) and the optional

legend and grid instructions have been defined, the subplot area is

ready to plot the points on the graph. The graph instruction is

specified in the form:

GRAPH title (graph type,number of plots,values)

The title is an optional user defined character string of length

20 characters or less. The title is printed at the top of the graph

and centered across the subplot area. The graph type is one of the

reserved words LINEAR, BAR, or PIE used to specify which basic type

of graph is to be drawn. The other types of graphs will be discussed

in the next section. The number of plots is an integer value that

specifies the number of plots to be drawn on the linear or bar graph;

for pie graphs, this value represents the number of pie sections in

the graph.
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Since the use of the values supplied in the graph instruction

varies with the type of graph being drawn, this description is

subdivided into two parts: pie graphs, and linear and bar graphs. At

present, the decription of this parameter is limited to direct input

of the values. In the next section, it will be shown how these

values can be passed into the instruction by an array identifier

containing the values of the plotting points.

For direct input of the values, this parameter begins with the

reserved word DATA followed by the list of values enclosed in slash

marks ("I") and separated by commas. These values may be of type

integer or real and may even be intermixed.

- Pie Graphs:

The values used in a pie graph are the percentages (%) of the

pie sections. The sum of these percentages must be less than or

equal to 100%. If the sum is less than 100%, the remaining section

of the pie will have the character string "OTHERS" inserted. Figure

31 shows an example pie graph from a program, using the legend

instruction. Figure 32 shows the results of this page subtask.
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PROGRAM examplepie
PAGE drawpie(VERTICAL,CENTER, 5,RIGHT TOP)
MARGIN(I INCH,1 INCH)
FRAME
LEGEND ("cars", /* automobiles */

"trucks", /* 2 and 4 wheel */
"vans") /* customized *1

GRAPH "automobile sales"
(PIE, /* define pie graph */

3, /* # of sections */
DATA / 47.6, /* car sales */

32.4, /* truck sales */
15/) /* van sales */

END PAGE drawpie
END PROGRAM examplepie.

FIGURE 31 Pie Graph Example

AUTOMOBILE SALES

redefined margin

U/

FIGURE 32 Pie Graph Example

Linear and Bar Graphs:

In linear and bar graphs, the values passed by the graph
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instruction are the Y coordinates for each plotting point of the

graph. Remember that the X coordinates are specified by the delta

declared in the X axis of the graph. Therefore, the first value is

the Y coordinate of the first plot; the X coordinate is at the

minimum point of the X axis. The second value is the Y coordinate of

the second point on the first plot; the X coordinate is at the first

incremental step of the X axis. The sequence continues as shown in

table 2.

In general, if the number of plots specified in the graph

instruction is an integer value m, and if the delta of the X axis is

specified as an integer value n, then the values defined in the graph

-instruction are the Y coordinates of the plots and the X coordinates

are those shown in table 2.

TABLE 2

Direct Data Graph Coordinates

VALUE NUMBER X COORDINATES

1 nminimum,lst plot
2 ist delta,lst plot

n maximum,lst plot
n+l minimum,2nd plot

2n maximum, 2nd plot
2n+1 minimum,3rd plot

mn maximum,nth plot

As can be seen in table 2, the number of values used for

plotting points is always m times n. If the number of values

supplied in the graph instruction is less than this amount, the

system will use the value of 0 for the remaining Y coordinates. If
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the number of values is greater, then all values after the MNth will

be ignored. Figure 33 and 34 show the use of the linear and bar

graphs by plotting the same values for each. The value 36.8:5

represents the use of a feature available in direct input and has the

same meaning as 36.8, 36.8, 36.8, 36.8, 36.8

PROGRAM exampleb l
PAGE drawb 1(HORIZONTAL,LEFT RESET,O,TOP)

SEGMENT drawbar(O INCH, 4.25 INCH, /* x dimen */
0 INCH, 6.5 INCH) /* y dimen */

FRAME /* enclose plot */
/* scaling of axes within the subplot area

will occur automatically */
X AXIS -("hours", /* hours of the day */

0,24, /* min and max
5, /* V of plots */
0) /* no ticks *1

Y AXIS -("decibels", /* noise level *
0,120, /* 0-120 Db */

7, /* every 20 Db */
0) /* no ticks */

LEGEND "freeway" /* title legend */
(LEFT TOP, /* location */
"weekdays",
"weekends",
"average") /* note order */

GRAPH (BAR, 3,
DATA/10,70,56,87,10, /* weekdays */

6,37,43,40,9, /* weekends */
36.8:5/) /* average */

END SEGMENT draw bar
SEGMENT draw fin

(4.25 INCH,8.5 INCH, /* x dimen */
C, INCH,6.5 INCH) /* y dimen *1

X AXIS -("U. -F",0,24,5,5)
Y AXIS -("6,C *:els",0,120,7,1)
GRAPH "nois, >vel"(LINEAR, 3,

DATA /10,70,56,87,10,
6,37,43,40,9,
36.8:5 /)

END SEGMENT draw lin
END PAGE drawb 1

END PROGRAM exampleb1.

FIG'TF 33 Bar and Linear Graph Example
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FIGURE 34 Bar and Linear Graph Exampi-
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Text Instruction:

The text instruction is used to print actual character strings

in the page or segment subtask once the subplot area has been

defined. All text instructions are of the form:

TEXT(text type text style,character string,

start,length,height)

The text type is the justification of the character string to be

printed, determined by one of the reserved word sets: LEFT JUSTIFIED,

RIGHT JUSTIFIED, L-R JUSTIFIED, TOP CENTERED, BOTTOM CENTERED, or

CENTERED. With the reserved words LEFT JUSTIFIED, the character

string will be printed in consecutive lines, starting at the top of

-the subplot area with left margin justification. The breaking point

at the end of each line is determined by the number of words that can

be packed per line. However, a string can be continued to the next

line by inserting either "#nl" (new line) or "#np" (new paragraph)

within the character string at the point the new line is to begin.

"#nl" and "#np" are bypassed and will not be printed. "#nl" will

cause the next line to be printed starting at the left edge of the

subplot area "#np" will cause the next line to begin with a 15%

indentation of the X dimension in the subplot area.

With the reserved words RIGHT JUSTIFIED, the character string

will be printed with right margin justification. Breaking point of

each line is determined in the same manner as in left margin

justification, except that both "#nl" and "#np" are interpreted as

"#nl". There is no paragraph indention for right justified text.

With the reserved words L-R JUSTIFIED as the text type, the
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justification is both left and right justified. At each breaking

point of a line not caused by "#nl" and "imnp", the spacing between

each character is set so that the line ends at the right margin.

"#nl" and "#np" breaking is handled in the same fashion as left

justified.

The spacing between each line is dependent upon the character

height specified in the text instruction (see below); therefore, in

the case that the number of lines tines the character height plus the

line spacing is less than the Y dimension of the subplot area, the

lower portion of the subplot area will remain empty. In other words,

the spacing between each line will not be adjusted so that the

-complete subtask is used to draw the text.

If the character string is too long to be printed within the

subplot area, only those characters that fit into the area will be

printed. In the next section, it will be shown how a string

identifier can be used to continue a character string from one

subtask to the next.

If the text type is CENTERED, each line of the string is

centered across the subplot area and evenly spaced so that the first

line is at the top of the subplot area and the last is at the bottom.

In all CENTERED text types, hfi1nlr and "1/np" act only as breaking

points of the lines. Breaking points must occur with one of these

two symbol sets for CENTERED text.

For the TOP CENTERED text type, each line is centered across

the subplot area starting at the top. Spacing between each line is

treated in the same manner as justified text: it is independent of
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the number of lines. For the BOTTOM CENTERED text type, the last

line is printed just above the lower edge of the subplot area. Like

TOP CENTERED, spacing between lines is treated in the same manner as

justified text.

The text style is the type of character style to be used in4
drawing the character string. These may be any of the styles

specified by DISSPLA (ref 4). At this point, only the default style

will be used by inserting the reserved word SIMPLE. The other styles

will be discussed in the next section.

The second parameter is the character string to be printed.

Remember that all strings are enclosed in double quotations.

- Start is an integer value used as a pointer into the character

string as the starting location. If the value is 1, the characters

will be printed starting at the beginning of the string. This value

cannot be greater than the length of the character string.

The length is an integer value or the reserved word CONTINUE

used to determine the number of characters to be printed. If an

integer value is used, only the number of characters specified will

be printed. If the value is greater than the length of the string

from the point specified by start, or if the reserved word CONTINUE

is used, the string will be printed until either the end of string is

reached or until the subplot area is filled. This eliminates the

task of having to count the number of characters in a string.

One point should be made about using start and length. The

starting and ending points in a string should not be within the

locations where "#nl" and "#np" are found, since this will cause the

system to bypass these commands.
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Height is an integer or real value followed by the reserved word

INCH or INCHES and specifies the character height to be used in

printing the text.

Figure 35 and 36 show the use of left and right justified and

top centered and centered text styles.
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PAGE text examp(VERTICALcenter,0,top)

SEGMENT ljust(0.00 INCH,4.50 INCH,

3.25 INCH,9.00 INCH)

FRAME
TEXT(LEFT JUSTIFIED SIMPLE,

"this is#nlan example~nl"&
"of justified#nltext",

1,CONTINUE, .50 INCHES)
END SEGMENT i just

SEGMENT rjust(3.25 INCH,4.5 INCH,
6.50 INCH,9.00 INCH)

FRAME
TEXT(RIGHT JUSTIFIED SIMPLE,

"this is#nlan example:nl"&
"of justified#nl text",

1 ,CONTINUE, .50 INCHES)
END SEGMEN'T rust
SEGMENT t cent(O.00 INCH,0.00 INCH,

3.25 INCH,4.5 INCH)
FRAME
TEXT(TOP CENTERED SIMPLE,

"top#npcentered",
1,100,.25 INCHES)

END SEGMENT t cent
SEGMENT cent(3.25 INCH,0.00 INCH,

6.50 INCH,4.50 INCH)

FRAME

TEXT (CENTERED SIMPLE,
"this part not printed."&
"cent ered ' nltext",

23,17,.25 INCHES)

END SEGMENT cent

END PAGE text_examp

FIGURE 35 Text Example
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FIGURE 36 Text Example
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11. PROGRAM ENHANCEMENT

Constants and Variables:

Up to this point, all programs have been shown to be written

using literals as the basis of computation. The problem with this

type of program implementation is that no matter how many times theI

program is executed, the results will always be the same. To change

the output results, the user must edit the input program and change

each of the literals. For programs that are even several page

subtasks in length, this problem becomes almost impossible, since the

user must understand how the changes will affect the output. To make

programming more versatile, the programmer can assign a value or a

Lset of values to a user defined identifier and then access these

values through the identifier name. The same restrictions apply to

value identifiers as those that apply to identifiers used in naming

subtasks:

1) the length cannot exceed 10 characters,

2) the first character must be a letter,

3) only letters, digits, and the underscore are allowed,

4) an identifier caanot be a reserved word.

The first encounter of a value identifier is always within the

declaration blocks of a program, where the identifier is declared to

be either a CONSTANT or VARIABLE. As these names imply, once a

constant is assigned a value (within the declaration block), the

value ca'nnot be changed. However, the values of variables can change

during the execution of a program.

Declarations can occur only at the head of a subtask (PROGRAM,
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SECTION, PAGE, or SEGM4ENT). An exception to this rule applies to the

use of conditional statements. This topic will be discussed in

section IV. A declaration block begins with the word DECLARE

followed by the constant declaration set, the variable declaration

set, and ends with the words END DECLARE. The constant declaration

set begins with the word CONSTANT followed by a set of constant

identifier assignments of the form:

identifier - value

The value may be integer, real, boolean, or character string.

The variable declaration set begins with the word VARIABLE followed

by a set of variable declarations of the form:

identifier list : type

an identifier list can be a list of from 1 to 10 identifiers

separated by commas. The type denotes the type assignment to the

identifier list.

It is not required that both constants and variables be declared

within every declaration block. However, when both occur, the

constant declaration set must occur before the variable declaration

set.

An identifier can be assigned one of seven types: INTEGER, REAL,

BOOLEAN, CHARACTER, STRING, AXIS, and UNIT. Once an identifier has

been assigned a type, it cannot be changed. It is important to

recognize the difference between assigning a type and assigning a

value to a variable. The type specifies the type of value that the

identifier will contain; therefore, while a variable may be

reassigned different values, the type will always remain the same.
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Since integers, reals, and booleans were discussed in the

previous section, further description of these types will be deferred

until the subsection on expressions. The use of the type CHARACTER

for this version of the language is limited to logic comparisons

only. At this point, it is enough to note that characters are

defined to be character strings of length 1. For example, "5"

represents the character value 5. This should not be confused with

the integer value 5. The two are not equivalent.

When defining an identifier to be of type STRING, it is meant

that the value the identifier will contain is a character string.

The maximum length of the character string is defined by an integer

-value enclosed in parentheses following the word STRING in the

declaration. Like the type assigned to a variable, the length of

string types cannot change.

Axis variables, when declared, are assigned a record structure

of values that are defined to be the five parts of an axis: the

title, the type, the minimum and maximum points, the delta, and the

ticks. Like the description previously stated for these parts, each

axis variable record component has the same characteristics. The

defining and handling of axis variables will be discussed later in

the subsection on Assignment Instructions.

Unit variables are used as a method of scaling distances within

a subplot area or as a conversion to any other system of measurement

the user desires. As an example of scaling, the user could define

the identifier MILES to be of type UNIT and then later, in an

assignment instruction (see below), assign to it the value: 10
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INCHES. At any point within the subtask after the assignment has

been made, the user can refer to distances in units of MILES and the

system will convert the scaling factor to INCH units (i.e. .5 MILES

is converted to 5 INCHES). For example, the user could define the

identifier CENTIMETER to be of type UNIT, assign the value (1/2.54)

INCHES, and then refer to distance units in terms of centimeter.

The user could then define MILLIMETER to be of type UNIT, and assign

the value .1 CENTIMETER after the centimeter value assignment has

been made.

An identifier of any of the four basic types INTEGER, REAL,

BOOLEAN, and CHARACTER may also be declared as an arrey. An array is

-an ordered collection of values contained under a common identifier

and consequently have the same type associated with that identifier.

Arrays are used to store interrelated values together. A variable

array declaration is of the form:

identifier list :ARRAY [index] OF basic type

where the basic type is one of the four reserved words mentioned

above. The index is a list of one or more integer values that

represent the sizes of the variable's dimensions. Each dimension

value is called a subscript. At present, the system is limited to

three dimensions.
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1 PROGRAM exdeclare

2 DECLARE
3 CONSTANT pi- 3 .141 5 92 6

4 END DECLARE

12 SECTION sect dec

13 DECLARE

14 VARIABLE

15 pager,index:INTEGER
16 flag:BOOLEAN /* test */
17 stack:ARRAY[2,2,10] OF REAL
18 xcharset, /* note how */
19 ycharset, /* each line */

20 xaxset, /* can be used */
21 yaxset: /* to define */
22 STRING (9)/* variables */
23 END DECLARE

31 PAGE pagedec

32 DECLARE

33 CONSTANT
34 setup="time axis"
35 VARIABLE
36 cm,mm:UNIT
37 axis_drawl,
38 axis draw2:AXIS
39 index:REAL
40 END declare

48 END PAGEPAGEDEC

63 END SECTION sectdec

64 END PROGRAM ex declare.

FIGURE 37 Constant and Variable Declarations

Figure 37 shows an example of how constants and variables are

declared. In this example, each of the three subtasks are used to

declare value identifiers. In the program subtask, only the constant

PI is declared (lines 2-4). Since the value is real, the type

assigned to the identifier PI is real. It is important to remember

that the difference between declaring PI to be a constant with the
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value 3.1415926, and declaring PI to be a real variable and assigning

this value to it in the program, is that constants cannot be changed.

In figure 37, the programmer may now access PI anywhere within the

program without worrying that the value this identifier contains may

not always be the standard value, as would be the case if PI were

declared to be a variable. Thus, it can be seen that the use of

constants should not be viewed as a restriction upon the user, but

provides a failsafe against redefining a value identifier.

In the SECT DEC section subtask, only variables are declared

(lines 13-23). In lines 18-221, it is shown that, while the structure

is still syntactically correct (see the variable declaration form

-specified above), the format is unrestricted. The declaration on

line 17 sets up a three-dimensional array of reals to be contained

within the identifier STACK.

Within the PAGEDEC page subtask, both a constant and variables

have been declared. The identifier SETUP on line 34 is assigned a

character string of length 9. Just as for integer or real constants,

string constants may not be changed; consequently, the length also

remains constant.

Before continuing to the description of arithmetic expressions,

several important notes concerning the activation of constants and

variables need to be discussed. Constants or variables become active

at the point they are declared, and become inactive when the

subtask that the constants and variables were declareed within has

been exited. In figure 37, the constant SETUP and the variables

declared within PAGEDEC, therefore, are local only to that
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particular page subtask, and become inactive once line 48 has been

executed. Constants and variables can only be accessed while they

are active. The constant PI is a global constant since it is

declared at the head of the program and remains active until the last

line (64) is executed.

While not usually a good programming technique, the declaration

of INDEX (line 15) demonstrates an extension to activation of a

variable. Another variable INDEX was declared within PACEDEC (line

39). Within the page subtask, the SECT DEC INDEX becomes inactive

and unaccessible during the execution of PAGE DEC and the value is

unaffected while the PAGEDEC INDEX is active. On completion of the

-page subtask (line 48), the PAGEDEC INDEX becomes indefinitely

inactive and the SECTDEC INDEX is returned to the active state until

the execution of line 63.

Arithmetic Expressions:

Expressions are used to compute results from a sequence of

arithmetic operations. For this language, these operations are

implicitly performed in the standard format for algebraic

mathematics: left to right, proceeding according to specific rules of

precedence. Table 3 defines the order or precedence that operations

are performed. Lower order operations are performed first. In the

case of a sequence of operations that occur at the same level (i.e.

-5+3-1), the operations are performed left to right.

An operator is a word or symbol that defines the type of

operation to be performed upon the operand(s). An operand will either
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be a resulting value from a previous operation or one of the

primaries listed in table 4. Tables 3 and 4 also show the

restrictions on the type that each operand can be, and gives the

resulting type for each operation. Table 5 defines the type symbols

used in both tables.

Figure 38 illustrates the order of evaluation for an expression.

Although each of the operators and operands are written in the same

order, the use of the explicit evaluation ")"from table 4 s'Iows

the effect it has upon the precedence of evaluation. In the first

case, the expression is completely implicit, therefore the expression

becomes equivalent to:

Explicit evaluations can be interpreted to mean: "If a left

parenthesis is encountered at the start of an operand, evaluate what

is within the parentheses and use this result as the operand of the

operation." Whether the internal operation (within the parentheses)

is a lower precedence than the external operation or not, the

internal operation is always evaluated first.

In all three cases, each of the primaries are integer literals

and each operation results in an integer value. In figure 39, the

same expressions are used except that several of the literals are now

reals to show that the value and type results vary from those in

figure 38.
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TABLE 3

PRECEDENCE OF OPERATIONS

LEVEL OPERAND OPERATOR OPERAND RESULT OPERATION

1.1 R R R exponentiation
•.2 R ** I R exponentiation

.3 I ** R R exponentiation

.4 I ** I +1 exponentiation
2.1 R * R R multiplication
.2 R * I R multiplication
.3 I * R R multiplication
.4 I * I I multiplication
.5 R / R R division
.6 R / I R divisionk.7 I/ R R division

.8 1 1 1 integer division
•.9 1 MOD I I modulus
.10 1 REM I I remainder

3.1 + I I unary plus
.2 R R unary plus
•.3 1 1 unary minus
.4 - R R unary minus
•.5 R + R R addition
.6 R + I R addition

.7 I+ R R addition

.8 I+ I I addition
•.9 CS + CS CS string concatenation
.10 R - R R subtraction.11 R - I R subtraction

•.12 1 - R R subtraction
•.13 1 - I I subtraction

4.1 B AND B B conjunction
.2 B OR B B inclusive disjunc.
.3 B XOR B B exclusive disjunc.

5.1 BASIC < BASIC B compare l.t.
.2 BASIC <= BASIC B compare l.t.eq.
.3 BASIC = BASIC B compare eq.
.4 A 1= A B compare not eq.
.5 BASIC '= BASIC B compare g.t.eq.
.6 BASIC > BASIC B compare g.t.
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TABLE 4

EXPRESSION PRIMARIES

OPERAND PARAIMETER(S) RESULT OPERATION

1 variable [ I list 3 I/R/B/C array variable

2 variable I/R/B/C/S

3 constant I/R/S

4 literals I/R/B/CS
5 (expression) same explicit evaluation
6 NOT ( B ) B logic inverter

7 SIN ( R ) R sine function(rad)
8 COS ( R ) R cosine function(rad)

9 TAN ( R ) R tangent function(rad)
10 INV SIN ( R ) R inverse sine

11 INV COS ( R ) R inverse cosine
12 INV TAN ( R ) R inverse tangent
13 INTEGER ( R ) I convert R to I
14 FLOAT ( I ) R convert I to R
15 FRACTION ( R ) R return fraction of R

16 ABSOLUTE ( I ) I absolute value
17 ABSOLUTE ( R ) R absolute value
18 POINT ( S ) +I return pointer
19 LENGTH ( S ) +1 return string length

20 ORIGIN X) +R return X origin
21 ORIGIN (Y) +R return Y origin
22 AREA X) +R return X length
23 AREA (Y) +R return Y length
24 REFERENCE ( S , CS ) +I return reference point

25 STRING ( I ) CS rcturn CS of I
26 STRING ( R ) CS ret-uirn CS of R
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TABLE 5

TYPE SYMBOLS

TYPE

A all type expressions excluding
axis and unit variables

B boolean expressions
BASIC integer,real,boolean,or character

expressions

I integer expressions
+I positive integer result
R real expressions
+R positive real result

CS CHARACTER string
S string identifier
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(a)105-23"2+ (b) 10((2 "3*+)

2.8.4 /1.4

0 8 36

83.13

-16 a 31 +

'3.8 .j1 .

15 10 D 3

(a) 1O/5-2*3**2+1 (b) 1O/(5-((2*3)**2+1))

2.84

FIGURE 38 Integer Expression Example
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3 2

10. 5 2 *2 9.

'- 2.6 . +1.3
IT

3.6 3.6

-15~( 0

"' 2.5Lj

'.33
(a) 10./5-2*3**2.+1 (b) 10./((5-(2*3)*'*2.))+i)

0. 3 3 3.

2. . 33.3333 * '27

(c) 10./(5-(2"3)*'2+1)

FIGURE 39 Real Expression Examples

Functions:
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In table 4, the primaries from line 6 to 26 are called

functions. Functions are used to perform a specific evaluation on

the parameter(s) passed. In most cases, the parameters may be any

expression as long a's the type resulting from the expression is of

the type indicated under PARAMETER(S) in table 4. Exceptions of the

use of expressions are where S denotes a string identifier, CS

denotes a character string, and where X and Y are used (lines 20-23).

Converts the result of an integer expression to type real. The value

of the integer parameter is actually not changed, but the type is

converted. For example, FLOAT(5) returns the value 5.0. FRACTION

returns the fractional portion of a real expression result;

-therefore, a real expression may be broken into its integer and

fraction by these two functions. ABSOLUTE returns the absolute value

of a real or integer expression result, but does not affect the type

(i.e. ABSOLUTE (5.3)=5.3 and ABSOLUTE(-10)-1O).

The functions on lines 18-19 and 24-26 are string functions.

POINT returns the pointer to the character in the string identifier

immediately after the last character printed on the screen. This

function is specifically used to interact with the text instruction

when two or more pages or segments are needed to print a long string

of text. If the string identifier has not b'!en used within a text

instruction, or if the complete character string has been printed,

the value returned is I. LENGTH returns the number of characters

assigned to a string identifier. This value may be different than

the length that the identifier was declared to be if the character

string assigned is shorter. For example, if the identifier in the

declaration:
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store_strn:STRING(25)

is later assigned the character string "not long enough", then

LENGTH(storestrn) will return the value 15, not 25.

The function REFERENCE is used to locate a character string

within a string identifier by returning a pointer to the head of the

character string first encountered in the identifier. In the

example above, REFERENCE (store strn, "en") returns the value 10.

This function is often used with the POINT function to locate

references to graphs within a character string so that these graphs

can be plotted near i-heir references. An example of the use of these

functions will be given later. The STRING function is used to return

the character string of an integer or real expression. This function

can be used in concat concatenation of character strings (defined as

character string addition). For example, "the temperature is" +

string(48.60) + " degrees" produces the string, "the temperature is

48.6 degrees".

The ORIGIN and AREA functions provide a method ot positioning

page segments at particular points on the page. ORIGIN(X), when used

in a page subtask or in defining a segment subrask, returns the

distance (in inches) in the X direction from the lower left physical

c0ci:i of the page to the page physical origin. ORIGIN(Y) returns

the -'-stance in the Y direction. This function is used to define the

lower left corner of a segment, when the position is to be

independent of the page physical origin. For example, figure 40

illustrates how a segment may be positioned exactly (2.5 INCHES,4.5

INCE.-f from the lower left corner of the page no matter how the
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margin and frame instructions affect the physical origin of the page.

One problem still remains with this illustration. If the segment

positions lie outside the page physical origin, errors will still

occur. The ORIGIN function, when used within a segment subtask, will

return the distance from the page physical origin from the segment

physical origin. These values, in later versions of this language,

will be used for user-defined windowing of objects within a page

segment.

PAGE segset up(VERTICAL,center,
MARGIN( . . .
FRAME( ....
SEGMENT exact((2.5-ORIGIN(X)) INCHES,3 INCHES,

(4.5-ORIGIN(Y)) INCHES, 3 INCHES)

FIGURE 40 ORIGIN Function Example

AREA(X) returns the lengt' of the subplot area in the X

direction of the page or page segment, depending upon which subtask

the function is called in. In the previous section it was stated

that the position and size of each page subtask plot area must be

calculated so that segment subplot points are not out of the page

bounds. If the size of the page subplot area depends upon the

evaluation of expressions, the dimensions may not be calculated until

the program is executing. In figure 41, the page segments are

defined according to this function. The page subtask is evenly

divided into four equally-sized segments. Note that although the
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margin and frame instructions affect the sizes of the segments, the

expression values for the parameters of both cannot be evaluated

previous to the execution of the page subtask procedure.

PROGRAM areaset
DECLARE VARIABLE

frarsize,margsize:real
END DECLARE

PAGE not set(HORIZONTAL,left reset,
MARGIN(margsize)
FRAME (framsize)
SEGMENT setup(O INCH,(area(x)2) INCH,

0 INCH,(area(y)2) INCH)

END SEGMENT setup 1

FIGURE 41 AREA Function example

Assignment Instructions:

Once a variable has been declared, and while the variable is

active, it can be assigned a value. The value of an assignment must

be of the same type as the type the variable was declared to be.

There are no other restrictions upon an assignment instruction. An

assignment may occur in one of two methods. The first type is an

explicit assignment instruction called a set instruction. The

formats for set instructions are as follows:

SET variable - expression

SET variable [array components) - expression

SET STRING string variable - expression
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SET UNIT unit variable - expression unit identifier

SET AXIS axis variable - (title,type,min,max,delta,ticks)

The first is used for defining a variable of any of the basic

types: INTEGER, REAL, BOOLEAN', and CHARACTER. The expression

evaluated must be of the same type as the variable. For character

variables, the expression may only be another character variable

previously defined, a single character in double quotations, or the

STRING function where the expression parameter is evaluated to be an

integer between 0 and 9. No other restrictions apply. Expressions

may be of any length.

The second set instruction is used for defining an array

variable. The array components enclosed in brackets is a list of

integer values that specify which component is being assigned. The

number of integer values must be the same as the number of dimensions

of the variable, and each integer value must be less than or equal to

the corresponding simension in the declaration. All variables that

have been declared as arrays must have specified array components in

a set instruction.

The third instruction is used to define a string variable. The

expression may be either another string variable or constant, a

character string, the STRING function, or a concatenation of

character strings and STRING functions. The length of the character

string expression must not exceed the length of the string variable

(determined in the declaration of the variable).

In the assignment of a unit variable, the expression must be of

type INTEGER or REAL. The unit identifier may be either a prev'iously

defined unit variable or the word INCH or INCHES.
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For an axis variable assignment, all five record components may

be defined as shown in the fifth set instruction format. Each

component's characteristics are the same as those discussed in the

previous section under the axis instruction, except that now

expressions may be inserted. These characteristics are expanded here

to inzlude string variables and constants or concatenation of

character strings and STRING functions for the title; integer or real

expressions where the axis is not of type MONTH; and integer

expressions for the delta and ticks components. These expansions may

also be used in the components defined for the axis instruction too.

They were deffered until the discussion on expressions.

- Any one of the axis variable's components may also be defined or

redefined individually without having to declare all of the parts at

once. These formats are:

SET AXIS axis variable.TITLE=title

SET AXIS axis variable.TYPE-type

SET AXIS axis variable.KIN-min

SET AXIS axis variable.MAX-max

SET AXIS axis variable.DELTA-delta

SET AXIS axis variable.TICKS-ticks

These set instructions provide an excellent way of defining each

part at different locations in the program. The only restriction is

that once the TYPE of an axis variable has been defined, it cannot be

redefined to be another axis type unless all parts are defined at
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once. This is required by the conversiou necessary for MIN and MAX

values, since their values depend upon the type of axis defined.

Also, if MIN and/or MAX are defined to be a month (i.e. JAN,feb,...)

prior to defining the type of axis, TYPE will automatically be set to

MONTH.

The second type of assignment instruction involves retrieving

data (data, constant values, and constants are used interchangablx)

from a specified file or from the input deck. Appendix B of this

paper discusses how files are attached before the execution of the

program and how the data may be retrieved. This appendix will

describe only the formats of the input instruction and how the values

-retrieved are assigned to a variable. The type of data this system

allows are: integer and real constants, boolean values (TRUE or

FALSE), and character strings.

For retrieving data from an attached file, the input instruction

format is:

INPUT identifier:TAPE number

where the number is an integer constant .Expressions may not be used

in the place of this number. The current version of the system

allows only input from TAPEI and TAPE2. When the instruction is

executed, values are retrieved left to right, line by line, ignoring

any comments found. The identifier may be of one of the basic types

or a string variable. If the variable has been declared to be an

array, subscripts of the variable are not included. The system

retrieves the number of values from the tape that correspond to the
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dimensions of the variable. For arrays declared to be of more than

one dimension, values are assigned as shown in table 6. As an

example, v valstk is declared to be an ARRAY[2,2,10] OF REAL. Then

in the instruction:

INPUT y_valstk:TAPE 1

the next 40 (2 times 2 times 10) data values are retrieved from

TAPE1: the first value is assigned to y val stk[l,1,1], the second to

yvalstk[1,1,2], and continuing until the last value is assigned to

yval_s tk 2,2, 10) .

TABLE 6

Array Variable Assignments

VALUE READ ASSIGNhENT

ist [1 , I , ]
2nd E1 , 1 , 2)

Nth EI , I , N)
N+lth [1 , 2, 1)

2Nth El , 2 N)

2N+lth [1 , 3, 11

M2'1 th EI , M , N]
MN+Ith [2 , 1 1 ]

LMNth EL , M , N]

The format for retrieving data from the input deck is:

INPUT identifier:TERMINAL

The word TERMINAL is used as the source locator, instead of for
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example DECK, because the language was originally designed to run

interactivelv with the user. This simply means that the user could

choose the values for variables during runtime of the program by

typing them in from a terminal as the input instructions are

executed. The identifier is handled in the same manner as the tape

input instruction. In both of these two instructions, as data is

retrieved, the datum types are individually compared with the

variable identifier type before assigning the value. At any time, if

the types differ, an error message is printed and execution of the

instruction is stopped.

Data may also be assigned directly to a variable identifier by

-the format:

INPUT identifier: DATA / data list /

where the data list is a list of integer or real constants, a

list of boolean values (TRUE or FALSE), or a character string. As

was noted in the previous section in the description of the GRAPH

instruction, it is possible to reduce a list of constants that are

the same to the form:

value : number

to prevent having to type a long list of consecutive values. The

number must be an integer constant and represents the number of times

the constant is to be repeated.

For instance, if FLAGS is declared to be an ARRAY[100] OF
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SOOLEAN and the user wants to initialize the first 50 to TRUE and the

next 50 to FALSE, the input instruction could be:

INPLU flags:DATA / TRUE:50,false:50 /

Although the language allows assigning a character string to a

string identifier with this instruction, it should be rarely used if

at all, since

SET STRING string identifier = character string

is equivalent to the instruction

INPUT string identifier:DATA / character string I

and since the data list in the input instruction does not allow

character string concatenation or the use of the STRING function. In

the same light, assigning a basic type variable not defined as an

array is simpler and easier to understand with the SET instruction

since the data list does not allow expressions either.

Besides the normal type of output that this language provides to

a graphics terminal, a specific instruction is available to output

data to a specified tape or to the output file. The formats of the

output instruction are similar to those of the input instruction:

OUTPUT identifier:TAPE number

OUTPUT identifier:TERMINAL
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Tne system has two output tapes that data may be written to: 3

and 4. The identifier may be an array variable, basic variable,

string variable, an axis variable, or any of the constant identifier

types. Outputting string identifiers or variables to the output

file (TERMINAL), used with the trace function of the system, provides

a method of debugging any program. When the identifier is an array

variable, the values are written in the same sequence as they are

read in the input instruction, shown in table 6.

Paze For-mat Instructions:

At this pcint, before describing the page format instruction, it

-would be useful to define a term that will be used frequently from

this point on. A UNIT VALUE is an integer or real representation of

a specified distance. The distance value may be of any integer or

real type expression. This expression is followed by a variable of]

type UNIT or the unit word INCH or INCHES. Therefore, a unit set

instruction can be represented in the form:

SET UNIT unit variable - unit value

as well as defining the segment parameter list as of the form:

SEGMENT segment identifier(unit value, unit value,

unit value, unit value)

the syntax diagrams in appendix A show all locations where unit

values are used.
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There are three page format instructions available to the user

for redefining the size, the grace margin, and the binding margin of

pages. The values in the previous section of this appendix

describing these formats are default values of the system. Since

these instructions affect the output plots, they can only be called

in ti main program or in a section subtask, not within a page or

page segment.

To redefine the physical border or size of a page, the format

is:

BORDER unit value BY unit value

It is unimportant whether the length or height of the page is

specified first. If a page is defined to be VERTICAL, the longer

side is always the vertical dimension of the page and the shorter is

always the horizontal dimension. For a HORIZONTAL page, the format

is reversed: the longer side is the horizontal dimension. For pages

that are square (i.e. BORDER - 5 CENTIMETERS BY 5 CENTIMETERS),

HORIZONTAL and VERTICAL pages are the same.

The grace margin of a page is redefined by the grace margin

ins truc tion:

GRACE - unit value

This instruction also implicitly affects the location page

numbers are printed. If the page number location is TOP, the number

141



will be half the distance of the grace margin from the top edge of

the page border; for BOTTO', the number is printed half the distance

from the bottom edge. If the grace margin is set to 0 inches, or if

the margin is defined to be less than the character height (see

SECTION III of this appendix), the page number will not be printed.

The third page format instruction redefines the binding margin

of a page.

NG - unit value

If the binding margin is set equal to the grace margin, the user

-should note that the page margin parameter in the page construct list

becomes ambiguous since LEFT RESET, RIHT RESET, and CENTER produce

the same page margins: centered within the page.

An important point should be made about using these format

instructions. Like constants and variables declared in a specific

task, the page format instructions are active only in the subtasks

that they are called. For example, if a binding margin instruction

is called within the main program (before a section or page subtask),

then the binding format is global to the complete program and

affects every page subtask. However, if called within a section, the

format remains local to that subtask. If a page format instruction

is used in both the main program and within a section, the format

value defined within the main program becomes inactive during the

execution of the section, but is reactivated at the end of the

section.
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Page Margin Defaults:

In the previous section of this appendix, it was shown that the

binding margin is defined with the words LEFT RESET, RIGHT RESET, or

CENTER as the second parameter of the page construct list. In most

cases, however, when text and graphs are bound, pages are printed

both on the front and back. To prevent having to insert the LEFT and

RIGHT RESETs in every page parameter, a default allows consecutive

pages to be printed with opposing binding margins. The default is

activated when a blank space is found as the parameter.

Initially, upon entering the first page of the program or a

section subtask, the default is equivalent to LEFT RESET, where the

binding margin is placed on the left side of the page. In the second

page subtask, the default is a right binding margin. At any time,

the default is reset when LEFT RESET or RIGHT RESET is inserted as

the parameter. When CENTERed page margins are used within a sequence

of binding pages, the default is affected as if a blank was inserted.

(That is, if a left binding margin page is followed by a CENTERed

page, the default for the next page will be a left binding margin).

Graph Instructions:

In the previous section, the format of the graph instruction,

along with the preparation instructions, was described for drawing

simple linear, bar, and pie graphs. ASGOL provides several

variations of these interpolations. Two smoothing techniques

provided by DISSPLA are available through ASGOL. SPLINE is a cubic
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spline interpolation that fits third order polynomials between each

plotting point on the graph. This type of interpolation produces the

smoothest fit for non-irregular data; however, in fitting the curve

through each point, it also tends to produce oscillations. Also, the

total number of points per curve that may be interpolated is limited

to 102 (100 plus the end points). SMOOTH, similar to SPLINE, is a

spline smoothing technique that is used for data that is somewhat

scattered and when the SPLINE method does not produce a sufficient

smoothing effect. SMOOTH produces the smoothest possible curve that

passes, on the average, within a specific distance of the data

points. These two techniques are described fully in the DISSPLA

-manual (ref 5).

ASGOL also has several variations of the basic BAR

4 interpolation. STEP i-terpolation is a degenerate cousin of the bar.

In STEP graphs, horizontal lines are drawn through each plotting

point of each curve, ending halfway between the X coordinates of the

plot. Vertical lines are then drawn connecting these end points and

producing a "stepping" effect. Graphs are not shaded with thnE STEP

interpolation. STACK BAR provides a method of showing 'sums of

values" at each X coordinate of the graph by stacking successix.e bar

plots, instead of placing them side by side as is the methc'd f the

basic BAR interpolation.

In addition to the direct input of Y coordinate values : ,issed

in the previous section, ASGOL also allows values to be passed with

the use of an array integer or real variable. The format for the

graph instruction is not different; the direct input parameter is

simply replaced by the variable name:
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GRAPH title (graph type, number of plots, variable)

Using the variable method is a much "cleaner" way of plotting

points on a graph, since the instruction is not cluttered with a long

list of values.

For plotting a single curve or a single bar plot on a graph

(number of plots-1), the variable can be declared to have 1, 2, or 3

dimension subscripts. For a single dimensional array, the subscripts

must be greater than or equal to the number of points to be plotted

(defined by the delta of the X axis). For 2 and 3-dimensional arrays,

if the number of points specified by the X axis is N, the Y values

-used for plotting are the array components [1,1] through [1,N] and

[1,1,1] through [I,I,N] respectively.

For plotting multiple curves or bar plots on a graph, if the

number of plots - M (M>1), then the variable must be declared to be a

2- or 3-dimensional array, where the minimum dimensions in the

declaration are [M,N] and [1,M,N] respectively. Table 2 can now be

revised to illustrate how the Y values of each plotting point are

obtained from a 3-dimensional array, shown in table 7. For 2-

dimensional arrays, the first subscript (1) is removed.
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TABLE 7

X COORDINATE OF ARRAY COMPONENTS

COMPONENT X coordinate

1,1,1 3 minimum,lst plot
1,1,2 3 1st delta,lst plot

1,1,N 3 maximum,lst plot
1,2,1 3 minimum, 2nd plot

1,2,N ] maximum,2nd plot
1,3,1 3 minimum,3rd plot

1,M,N 3 maximumMth plot

In this table, it can be seen that if the variable's second

dimension was declared to be J, where J>M, and the third dimension

was declared to be K, where K>N, then the values contained in the

variable's subscripts [1,M+1,1 through [1,M+1,K], . , [1,J,1]

through [1,J,K] become inaccessible for plotting.

One of the most powerful tools that ASGOL, version 1, provides

is the stack selection for graphs. With this feature, it is possible

to draw a series of linear or bar graphs, stacked vertically within

the subplot area. The only restrictions that apply to this option is

that no more than 6 graphs may be stacked, all graphs must be of the

same interpolation type, and each graph must contain the same number

or curves or bar plots. The stack option is useful when too many

plots on a single graph tend to "clutter" together, making it

difficult to distinguish individual curves. Each consecutive graph

is drawn directly above the previous graph, and for each graph, the Y
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axis is redrawn. The X axis is drawn only once, along the lower

horizontal edge of the bottom graph.

When the legend and grid instructions are used as preparation

instructions for stacked graphs, the instructions are called once for

each graph to be drawn (i.e. For a 9tack of 5 graphs, there would be

5 legend instructions). The first legend or grid instruction is used

by the bottom graph, the second by the graph above the bottom graph,

etc. If more legend or grid instructions than the number of graphs

are called, the remaining instructions will be ignored. If less

instructions are called, the remaining graphs will be drawn without a

legend or grid.

The format for the stack graph is:

GRAPH title (STACK OF number graph type,

number of plots, variable)

where number is an integer constant between 1 and 6. If the

optional title is used, the character string will be printed once at

the top of the subplot area.

Although it is possible to input the Y values directly for

stacked graphs, it is not recommended, since the X coordinate

locations for the plotting points become much more difficult to

determine. However, with an array variable, the extensions of the

stack option are simple and straight forward. If the number of

stacked graphs-L, then the variable must be a 3-dimensional array

where the minimum dimensions in the declaration is [L,m,n]. M and N
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denote the number of plots and number of points per plot as mentioned

above. Where the number of plots per graph is one (single curve or

bar plot), the variable may be a 2 or 3-dimensional array with

minimum dimensions [L,n] and [1,L,n) respectively. Table 8

illustrates the expansion of the 3-dimensional array in table 7 for

stacked graphs. In extending table 7, if the first dimension of the

variable is declared to be I, where I>L, and the second and third

dimensions are J and K, J>M, K>N, as mentioned above, then the values

contained in the variable's subscripts [L+1,1,1] through [L+1,J,k),

[,I,1,1] through [I,J,k] become inaccessible for plotting.

TABLE 8

X COORDINATES FOR STACKED GRAPHS

COMPONENT X COORDINATE

S1,1,11 ] minimum, lst plot,lst graph
[ 1,1,2 I st delta, 1st plot,lst graph

1,Mn J maximum,Mth plot,lst graph
2,1,1 J minimum, lst plot,2nd graph
2,1,2 2 ist delta,1st plot, 1st graph

2,M,n ) maximum,Mth plot,2nd graph

SL,1,1I ] minimum,lst plot,Lth graph

L,m,n ] maximum,Mth plot,Lth graph

An important note should be made about the use of the stack

option. Since all graphs are form-fitted to the subtask's subplot

area, the user should make sure that the vertical dimension of the

area is large enough that the graphs do not get "crunched". the

148



system will not write outside of the subplot area or chop off graphs

to make the first few recognizable. These are left for the user's

descretion.

Text Instruction:

In printing long character strings in text form on the screen,

it was stated in the previous section that it is possible to continue

the string in consecutive page or segment subtasks when the subplot

area is not large enough for the complete character string. This

variation of the text instruction does not involve any preparation

-instructions nor any changes to the actual format of tie instrucL-nn.

The format is written here for convenience.

TEXT (text type text style, string identifier,

start, length, height)

The changes in this instruction from the previous one is made in

the second parameter, where a string constant or variable replaces

the actual character string.

Each string constant :_nd variable, when declared, is assigned a

pointer value used spe& _ically by the text instruction. When a

string constant is assig. a character string within the declaration

block, and when a string variable is assigned a character string with

the SET or INPUT instruction, this pointer is initiali7ed to point at

the first character. The pointer is then updated each time the text
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instruction does an operation on the variable or constant. If the

text instruction encounters the end of the character string while the

characters are printed, the pointer is reset to point again to the

head of the string, and stops execution. If, however, the text

instruction reaches the end of the subplot area before the complete

character string is printed (or the number of characters in the

length parameter is reached), the pointer is updated to point to the

character after the last character drawn on the screen. The POINT

function described earlier is used to access this pointer value for

determining the location the text instruction is to begin printing.

If the word N~EXT is inserted as the start parameter for the text

-instruction, the instruction begins printing characters starting at

the character that the pointer specifies. NEXT can be used as the

parameter for the first text instruction call after the string

identifier has been assigned, in which case the instruction starts

with the first character of the string.

ASGOL does not provide a method ol explicitly setting the

pointer of a string identifier to a specific location since the start

parameter may also be an integer expression; however, in rare cases,

the pointer may be reset implicitly to point to the head of the

string with the SET instruction:

SET STRING string variable -string variable

where both string variables are -he name of the string

identifier. String constants cannot be reset due to the condition
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that constants cannot be reassigned. If this instruction is used, It

is recommended that the programmer provide comments in the program

describing why this instruction is included.

The text instruction also uses a default value for the character

height of the text to be printed if a blank space is encountered as

the parameter. The default height is 0.14 inches or the current

character height specified in the program (see Section III, String

Manipulation).

111. STRING MAIULATION:

Since ASGOL was designed with maximum capability for DISSPLA

-string manipulation, it would be impossible to describe completely in

a few pages each of the facets DISSPLA provides. Therefore, the user

is referred to the DISSPLA manual version 8.2 in the subsequent

section for further description of string manipulation for this

language. It is advised that the user study specifically chapters 6,

22, and 24 of Part B of that manual to become familiar with the

character styles and fonts DISSPLA provides and how they are

manipulated. However, the user is relieved of having to understand

the FORTRAN call instructions since ASGOL provides this construction

in its language.

In the definition of a character string in the first section of

this appendix, it was stated that the symbols (, ), +, -, *, and /

(defined as shift characters) are used by the system for character

font manipulation. Since DISSPLA allows up to six character sets to

be active at any time, the system uses the six most common fonts, as
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shown in table 9. When a character string is printed, if the first

character is not a shiftcharacter, the LOWER case ROMAN font is used

until a shift character is detected or until the end of string is

reached. When a shift character is detected, the font remains active

until another shift character is found.

TABLE 9

SHIFT CHARACTER REPRESENTATION

CHARACTER FONT
UPPER ROMAN
LOWER ROMAN

+ UPPER SCRIPT
LOWER SCRIPT

* UPIER ITALIC

/ LOWER ITALIC

DISSPLA, however, has eight other character sets available:

UPPER and LOWER case RUSSIAN, UPPER and LOWER case GREEK, HEBREW,

SPECIAL, M TH, and INSTRUCTION. Any of these character fonts can

become active simply by replacing the character font representation

for one of the six shift characters. Any or all of the implicit

fonts can be changed. The format of the change instruction is:

CHANGE implicit font TO explicit font

where the implicit font is ROMAN, SCRIPT, or ITALIC (preceeded

by the word UPPER or LOWER to specify the case) and the explicit font

is GREEK or ROMAN (preceeded by UPPER or LOWER), HEBREW, SPECIAL,
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MATH, or INSTRUCTION. INSTRUCTION is a special case in that it is

not a character font, but acts upon the succeeding characters similar

to the fonts. INSTRUCTION is discussed separately below.

For example, the LOWER case SCRIPT shift character - could be

changed to represent the MATH font by the instruction:

CH NGE LOWER SCRIPT TO MATH

After the execution of this instruction,each time the shift

character - is detected, the MATH font becomes active.

At any point of execution, no more than one shift character can

-be assigned to a character font. If, for example,

CHANGE UPPER ITALIC TO UPPER GREEK

was later followed by the instruction

CHANGE LOWER ROMAN TO UPPER GREEK

within the same subtask, an error would result because the

program has tried to assign both shift characters * and ) to the

LPPER case GREEK font.

The INSTRUCTION option affects the position and properties of

the characters to be drawn following the shift character of the font

to be used. Prior to this shift character, the shift character

representing the INSTRUCTION option and the instructions that act
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upon the text are inserted. Instructions consist of single character

commands followed by its arguments if any. At the end of the

character string that the instructions act upon, the instructions are

inserted again with 'x' as its argu.ment. This resets the

instructions previously activated. None of the instruction symbols

or shift characters are printed to the output. The DISSPLA manual

(ref 5) has the complete list of instruction commands.

The INSTRUCTION option provides a method of drawing characters,

affecting the character height, angle, style, and font within the

character string instead of as a parameter to an instruction.

However, a precaution should be made when using this option.

-Commands that affect the properties of the character string (i.e.

Character height) will be invisible to someone reading the program if

the person is unfamiliar with the instruction commands or if the

string is read from an input tape or file. Users should document

their programs to include how these commands are used to produce the

output.

The height of character strings can be changed by the height

instruction and can occur in any task:

HEIGHT =unit value

By default, characters are printed -ith a height of 0.14. inches.

When the height instruction is executed, the height of all

characters printed on the screen is affected, except those printed

with the text instruction without the default option for character

height.
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Like the page format commands, both the change and height

instructions are local to the subtask that the instructions are

called. These instructions may occur in any subtask, and can occur

any number of times. The user should also realize that when the

change instruction is used, it affects all of the strings drawn on

the screen. One possible mistake that could be made is changing the

font representation for one of the shift characters between two page

subtasks that are using the text instruction to draw a continuing

character string to the screen.

155



TABLE 10

Reserved Words and

Special Symbols

absolute false log scmplx
all feb logarithmic script
and float lower section
apr for l-r segment
area fraction mar sep
array frame margin set
arrow framed math simple
aug gothic max simplx
axis grace may sin
bar graph min smooth
binding greek mod special
boolean grid month spline
border hebrew next stack
bottom height not stacked
by help nov step
cartog horizontal oct string
case if of tan
.center inch or tape
centered inches origin terminal
change input others text
character inside output then
complx instruction outside ticks
constant integer page title
continue inv pie to
cos italic point top
create Jan program triplx
data Jul real true
dec jun reference type
declare justified rem unit
delta left repeat until
do legend reset upper
down length right variable
draw line roman vertical
duplx linear run while
else list russian x
end scan xor

y:+ * /
• * I= ( )

<15
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